DOI QR코드

DOI QR Code

[ α ]-Amylase Inhibitory Activity of Flower and Leaf Extracts from Buckwheat (Fagopyrum esculentum)

메밀(Fagopyrum esculentum) 꽃, 잎 추출건조물의 α-Amylase 효소활성 저해

  • 이명헌 (한림성심대학 식품영양과) ;
  • 이정선 (한림대학교 식의약품의 효능평가 및 기능성소재개발센터) ;
  • 양희철 (애드팜영농조합법인)
  • Published : 2008.01.31

Abstract

Prevention of postprandial hyperglycemia is important, as it is implicated in the development of macro- and microvascular complications associated with diabetes. An inhibitor of ${\alpha}$-amylase which acts in the first step of carbohydrate digestion, is expected to be a suppressor of postprandial hyperglycemia. This study investigated the porcine pancreatic ${\alpha}$-amylase inhibitory activity of the extracts from buckwheat (Fagopyrum esculentum) flower, leaf, stem and grain. Flower, leaf, stem and grain of buckwheat were extracted by water and ethanol (40%, 70%, 100%), respectively. Flower and leaf extracts were more effective ${\alpha}$-amylase inhibitors than stem and grain extracts in all tested solutions. Ethanol extracts were more effective than water extracts or powders on the ${\alpha}$-amylase inhibitory activities. At concentrations of $0.5%{\sim}10%$ (w/w, starch basis), the flower extracts of 40%, 70% and 100% ethanol lowered the enzyme activity by about 90% and the results were similar to the values of acarbose. At the same concentrations, the leaf extracts of 100% ethanol lowered the enzyme activity by about 90%. These results suggest that buckwheat flower and leaf ethanol extracts may delay carbohydrate digestion and lower postprandial hyperglycemia.

본 연구는 전분 가수분해효소인 ${\alpha}$-amylase의 효소활성 저해를 통해 식후 혈당조절제 개발 가능성을 확인하고자 메밀의 꽃, 잎, 줄기 및 곡립을 부위별로 분류하고 각각의 시료를 물, 40%, 70%, 100% 에탄올로 추출하고 건조한 추출건조물과 메밀건조 분말시료를 이용하여 in vitro에서 ${\alpha}$-amylase 활성 저해율을 측정하였다. 메밀부위별 물추출건조물(10%, w/w, starch basis)의 ${\alpha}$-amylase 활성 저해율은 꽃 66%, 잎 65%, 곡립 28%, 줄기 12% 순이었다. 이러한 결과는 추출 용매를 40%, 70%, 100% 에탄올로 하였을 때에도 유사하게 나타났다. 단지 잎추출건조물의 경우 70% 에탄올추출건조물의 효소활성 저해율이 100%와 40% 에탄올추출건조물보다 낮게 나타났다. 메밀 꽃과 잎 추출건조물을 기질의 0.1%, 0.5%, 1%, 2.5%, 5%, 10% 농도로 각각 첨가했을 때 에탄올로 추출한 꽃추출건조물의 경우 $0.5%{\sim}10%$ 농도에서 ${\alpha}$-amylase 활성을 약 90% 저해하였으며 이는 ${\alpha}$-amylase inhibitor인 acarbose와 유사한 수준이었다. 잎의 경우 100% 에탄올추출건조물에서 꽃과 비슷한 결과를 보였으며 40% 에탄올추출건조물에서는 꽃추출건조물보다 저해율이 다소 낮게 나타났다. 물추출건조물과 건조분말의 경우 에탄올추출물보다 꽃과 잎의 효소활성 저해율이 낮았다. 이러한 결과로 볼 때 메밀 꽃과 잎 추출건조물은 메밀 줄기 및 곡립 추출 건조물과 비교해서 효소활성 저해율이 높게 나타났으며, 물 추출이나 건조분말보다 100%, 40% 에탄올을 이용했을 때 추출건조물의 효소 저해율이 더욱 큰 것으로 나타나 이들 추출건조물은 식후 혈당조절제로 이용 가능성이 기대되는 소재로 사료된다.

Keywords

References

  1. Perfetti R, Barnett PS, Mathur R, Eqan JM. 1998. Novel therapeutic strategies for the treatment of type 2 diabetes. Diabetes Metab Rev 14: 207-225 https://doi.org/10.1002/(SICI)1099-0895(1998090)14:3<207::AID-DMR214>3.0.CO;2-J
  2. Donahue RP, Abbott RD, Reed DM, Yano K. 1987. Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes 36: 689-692 https://doi.org/10.2337/diabetes.36.6.689
  3. Mooradian AD, Thurman J. 1999. Drug therapy of post prandial hyperglycaemia. Drug 57: 19-29 https://doi.org/10.2165/00003495-199957010-00003
  4. 박강서. 1993. 경구혈당강하제의 병합요법. 대한당뇨병학회 연수강좌 자료집. p55-66
  5. Chun SH, Ryu IH, Park ST, Lee KS. 2001. Purification of $\alpha$-amylase inhibitor from white kidney bean (Phaseolus vulgaris). Korean J Food Sci Technol 33: 117-121
  6. Moon JS, Shin CS, Choi JS, Park SK, Shim KH. 1995. Purification of $\alpha$-amylase inhibitors from naked barley in Korea. J Korean Soc Food Nutr 24: 556-562
  7. Moon JS, Bae YI, Shim KH. 1998. The physicochemical properties of α-amylase inhibitors from black bean and naked barley in Korea. J Korean Soc Food Sci Nutr 27: 367-375
  8. Lee KS, Yang CB. 1988. Screening of oriental drugs for α-amylase inhibitor. Korean J Food Sci Techol 20: 644-649
  9. Kim SH, Kwon CS, Lee JS, Son KH, Lim JK, Kim JS. 2002. Inhibition of carbohydrate-digesting enzymes and amelioration of glucose tolerance by Korean medicinal herbs. J Food Sci Nutr 7: 62-66 https://doi.org/10.3746/jfn.2002.7.1.062
  10. Kim SG, An GH, Yoon SW, Lee YC, Ha SD. 2003. A study on dietary supplement to reduce obesity by the mechanism of decreasing lipid and carbohydrate absorption. Korean J Food Sci Technol 35: 519-526
  11. Hwang JY, Han JS. 2007. Inhibitory effects of Sasa borealis leaves extracts on carbohydrate digestive enzymes and postprandial hyperglycemia. J Korean Soc Food Sci Nutr 36: 989-994 https://doi.org/10.3746/jkfn.2007.36.8.989
  12. Kohli KR, Giri S, Kolhapure SA. 2004. Evaluation of the clinical efficacy and safety of diabecon in NIDDM. The Antiseptic 101: 487-494
  13. Yamamoto H, Nakagawa K. 2006. Carbohydrate digesting enzyme inhibitor. Japanese Patent JP2006-151838A
  14. Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE. 2004. Hypoglycaemic and anorexigenic activities of an α-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats. Br J Nutr 92: 785-790 https://doi.org/10.1079/BJN20041260
  15. Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE. 2006. White beans amylase inhibitor administered orally reduces glycemia in type 2 diabetic rats. Br J Nutr 96: 539-544
  16. Lee JS, Lee MH, Chang YK, Ju JS, Son HS. 1995. Effects of buckwheat diet on serum glucose and lipid metabolism in NIDDM. Korean J Nutrition 28: 809-816
  17. Lee JS, Park SJ, Sung KS, Han CK, Lee MH, Jung CW, Kwon TB. 2000. Effects of germinated buckwheat on blood pressure, plasma glucose and lipid levels on spontaneously hypertensive rats. Korean J Food Sci Technol 32: 206-211
  18. Lee MH. 1999. A study on anti-obesity metabolic effects of the dehulled germinated-buckwheat grain. PhD Dissertation. Korea University, Seoul, Korea
  19. Oomah BD, Mazza G. 1996. Flavonoids and antioxidative activities in buckwheat. J Agric Food Chem 44: 1746-1750 https://doi.org/10.1021/jf9508357
  20. Dunaif G, Schneeman BO. 1981. The effect of dietary fiber on human pancreatic enzyme activity in vitro. Am J Clin Nutr 34: 1034-1035 https://doi.org/10.1093/ajcn/34.6.1034
  21. Pesce AJ, Kaplan LA. 1987. Methods in Clinical Chemistry. Mosby Co., Toronto. p820
  22. Wilcox ER, Whitaker JR. 1984. Some aspects of the mechanism of complexation of red kidney bean $\alpha$-amylase inhibitor and $\alpha$-amylase. Biochemistry 23: 1783-1791 https://doi.org/10.1021/bi00303a031
  23. Al Kazaz M, Desseaux V, Marchis-Mouren G, Prodanov E, Santimone M. 1998. The mechanism of porcine pancreatic $\alpha$-amylase: Inhibition of maltopentaose hydrolysis by acarbose, maltose and maltotriose. Eur J Biochem 252: 100-107 https://doi.org/10.1046/j.1432-1327.1998.2520100.x
  24. Park BJ, Park JI, Chang KJ, Park CH. 2005. Comparison in rutin content of tartary buckwheat. Korea J Plant Res 18: 246-250
  25. Park BJ, Kwon SM, Park JI, Chang KJ, Park CH. 2005. Phenolic compounds in common and tartary buckwheat. Korean J Crop Sci 50: 175-180
  26. Lim CS, Li CY, Kim Y-M, Lee WY, Rhee HI. 2005. The inhibitory effect of Cornus Walteri extract against α- amylase. J Korean Soc Appl Biol Chem 48: 103-108
  27. Chrzaszcz T, Janicki J. 1933. 'Sisto-amylase', a natural inhibitor of amylase. Chem Abstr 27: 3491-3505
  28. Abu Soud RS, Hamdan II, Afifi FU. 2004. Alpha amylase inhibitory activity of some plant extracts with hypoglycemic activity. Sci Pharm 72: 25-53
  29. Birte S, Kenji F, Peter KN, Birgit CB. 2004. Proteinaceous α-amylase inhibitors. Biochimica et Biophysica Acta 1696: 145-156 https://doi.org/10.1016/j.bbapap.2003.07.004
  30. Jorge J, Octavio LF, Marcio S, Christiane TS, Carlos BJ, Daniel JR, Maria FGS. 2000. Purification, biochemical characterization and partial primary structure of a new $\alpha$-amylase inhibitor from Secale cereale (rye). The Int J Biochimica & Cell Biology 32: 1195-1204 https://doi.org/10.1016/S1357-2725(00)00053-4
  31. Thompson LU, Yoon JH. 1984. Starch digestibility as affected by polyphenols and phytic acid. J Food Sci 49: 1228-1229 https://doi.org/10.1111/j.1365-2621.1984.tb10443.x
  32. Thomson LU, Yoon JH, Jenkins DJ, Wolever TM, Jenkins AL. 1984. Relationship between polyphenol intake and blood glucose response of normal and diabetic individuals. Am J Clin Nutr 39: 745-751 https://doi.org/10.1093/ajcn/39.5.745

Cited by

  1. Neuronal Cell Protection and Antioxidant Activities of Hot Water Extract from Commercial Buckwheat Tea vol.18, pp.3, 2011, https://doi.org/10.11002/kjfp.2011.18.3.358
  2. Estimation of in vitro neuroprotective properties and quantification of rutin and fatty acids in buckwheat (Fagopyrum esculentum Moench) cultivated in Turkey vol.46, pp.2, 2012, https://doi.org/10.1016/j.foodres.2011.08.011
  3. A Study on the USA and Japan Consumer's Perception of the Korean Flower Tea and Their Willingness-to-Pay for It vol.27, pp.3, 2014, https://doi.org/10.9799/ksfan.2014.27.3.421
  4. A Study of the Consumer's Purchase Behavior and Willingness-to-Pay on Flower Tea vol.26, pp.2, 2013, https://doi.org/10.9799/ksfan.2013.26.2.295
  5. Changes of biochemical components and physiological activities of coffee beans according to different roasting conditions vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.182
  6. Physiological Activities of Ethanol Extracts from Different Parts of Allium hookeri vol.28, pp.2, 2015, https://doi.org/10.9799/ksfan.2015.28.2.295
  7. Effect of the Ethanol Extract of Common Buckwheat (Fagopyrum esculentum Mӧench) on Plasma Lipid Profile of High Fat Diet Rats vol.31, pp.4, 2008, https://doi.org/10.12719/ksia.2019.31.4.409
  8. Sensory Attributes of Buckwheat Jelly (Memilmuk) with Mung Bean Starch Added to Improve Texture and Taste vol.10, pp.11, 2021, https://doi.org/10.3390/foods10112860