Circuit Component Requirements for Energy Scavenging System

Energy Scavenging 시스템을 위한 회로의 특성

  • 강성묵 (중앙대 전자전기공학부) ;
  • 박경진 (중앙대 전자전기공학부) ;
  • 김호성 (중앙대 공대 전자전기공학부)
  • Published : 2008.10.01

Abstract

Energy scavenging is a technique that converts ambient energy, for example, vibration and light, to electrical energy in order to supply power to low power electronic devices such as ubiquitous sensors. In this paper, we propose an optimal operation condition of power delivery circuit and design strategy for energy scavenging system in which the generated power is order of microwatt and, consequently, efficient handling of power is critical. We also propose that high data transmission rate is more realistic optimal design objective rather than high energy efficiency. It is shown that disconnection of load from the storage capacitor right after data transmission reduces energy wasting and that optimal value of storage capacitor can be determined at this condition. The feasibility of our propose is proved by experiments and we believe that the proposed design strategy will promote the application of piezoelectric micropower generator to the ubiquitous sensor networks.

Keywords

References

  1. Chandrakasan A., Amirtharajah R., Goodman J and Rabiner W, Trends in low power digital signal processing Int. Symp. Circuits Syst. 4 ,1998, 604 - 7
  2. R. Amirtharajah and A. Chandrakasan, 'Self-powered signal processing using vibration based power generation,' IEEE J. Solid-State Circuits, 33, pp. 687-695, 1998 https://doi.org/10.1109/4.668982
  3. S. Roundry, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes Elsevier Computer Communications, 26, 1131-1144, 2003 https://doi.org/10.1016/S0140-3664(02)00248-7
  4. H.W Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, H.F. Hofmann, 'Energy harvesting using a piezoelectric 'cymbal' transducer in dynamic environment' Japanese Journal cf Applied Physics Vol. 43, No. 9A, pp. 6178-6183, 2004 https://doi.org/10.1143/JJAP.43.6178
  5. M. Ericka, D. Vasicl, F. Costa, and G. Poulain, 2005, Predictive energy Harvesting from mechanical vibration using a circular piezoelectric membrane, IEEE Ultrasonic Symp. 946- 949
  6. H. J. Kim, S. M. Kang, and H. Kim, 'Energy conversion efficiency improvement of piezoelectric micropower generator adopting low leakage diodes', Trans. KIEE. Vol.56, No.5, May, 2007
  7. Y C Shu and I C Lien, 2006, Efficiency of energy conversion for a piezoelectric power harvesting system, J. Micromech. Microeng., 16, 2429 - 2438 https://doi.org/10.1088/0960-1317/16/11/026
  8. C. D Richards, M. J Anderson, D. F Bahr, and R. F Richards, 2004, Efficiency of energy conversion for devices containing a piezoelectric component, J. Micromech. Microeng. 14 717 - 721 https://doi.org/10.1088/0960-1317/14/5/009
  9. G. K. Ottman, H. F. Hofmann,and G. A. Lesieutre, 2003, Optimized Piezoelectric Energy harvesting circuit using step-down converter in discontinuousconduction mode, IEEE Trans. Power Electronics, VOL. 18, NO. 2, 696-730 https://doi.org/10.1109/TPEL.2003.809379
  10. Cho J, Anderson M, Richards R, Bahr D and Richards C 2005 Optimization of electro-mechanical coupling for a thin-film PZT membrane: I. Modeling J. Micromech. Microeng. 15 1797 - 803 https://doi.org/10.1088/0960-1317/15/10/002
  11. Shu Y C and Lien I C 2006 Analysis of power output for piezoelectric energy harvesting systems Smart Mater. Struct. 15 1499 - 512 https://doi.org/10.1088/0964-1726/15/6/001
  12. Richards C D, Anderson M J, Bahr D F and Richards R F 2004 Efficiency of energy conversion for devices containing a piezoelectric component J. Micromech. Microeng. 14 717 - 21 https://doi.org/10.1088/0960-1317/14/5/009
  13. N.S. Shenck, J.A. Paradiso, 'Energy Scavenging with shoe-mounted piezoelectrics', IEEE, Micro, Vo1.21, No.3, 2001 May/June, pp30-42 https://doi.org/10.1109/40.928763