References
- Baumer, W., Seegers, U., Braun, M., Tschernig, T. and Kietzmann, M. (2004). TARC and RANTES, but not CTACK, are induced in two models of allergic contact dermatitis. Effects of cilomilast and diflorasone diacetate on T-cell-attracting chemokines. Br. J. Dermatol. 151, 823-830 https://doi.org/10.1111/j.1365-2133.2004.06220.x
- Best, S. M., Morris, K. L., Shannon, J. G., Robertson, S. J., Mitzel, D. N., Park, G. S., Boer, E., Wolfinbarger, J. B. and Bloom, M. E. (2005). Inhibition of interferon-stimulated JAKSTAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J. Virol. 76,12828-12839 https://doi.org/10.1128/JVI.79.20.12828-12839.2005
- Bito, T., Roy, S., Sen, C. K., Shirakawa, T., Gotoh, A., Ueda, M., Ichihashi, M. and Packer, L. (2002). Flavonoids differentially regulate IFN gamma-induced ICAM-1 expression in human keratinocytes: molecular mechanisms of action. FEBS Lett. 520, 145-52 https://doi.org/10.1016/S0014-5793(02)02810-7
-
Bonncchi, R., Sozzani, S., Stine, J. T., Luini, W., D'Amico, G., Allavena, P., Chantry, D. and Mautovani. A. (1998). Divergent effects of Interleukin-4 and Interferon-
${\gamma}$ on Macrophage-Derived Chemokine production : An amplification circuit of polarized T helper 2 responses. Blood 92, 2668-2671 - Bordignon, V, Sinagra J. L., Trento E., Pietravalle M., Capitanio, B. and Fei, P. C. (2005). Antigen specific cytokine response in pediatric patients with atopic dermatitis. Pediatr Allergy Immunol. 16,113-120 https://doi.org/10.1111/j.1399-3038.2005.00223.x
- Chiang, Y. M, Lo, C. P., Chen, Y. P., Wang, S. Y., Yang, N. S., Kuo, Y. H., and Shyur, L. F. (2005). Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br .J. Pharmacol. 146, 352-63 https://doi.org/10.1038/sj.bjp.0706343
- Esche, C., de Benedetto, A. and Beck, L. A. (2004). Keratinocytes in atopic dermatitis: Inflammatory signals. Cur. Allergy Asthma Rep. 4, 276-284 https://doi.org/10.1007/s11882-004-0071-8
- Fujisawa, T., Fujisawa, R., Kato, Y., Nakayama, T., Morita, A., Katsumata, H., Nishimori, H., Iguchi, K., kamiya, H., Gray, P. W., Chantry, D., Suzuki, R. and Yoshie, O. (2002). Presence of high contents of thymus and activation-regulated chemokine in platelets and elevated plasma levels of thymus and activation-regulated chemokine and macrophage-derived chemokine in patients with atopic dermatitis. J. Allergy Clin. Immunol. 110, 139-146 https://doi.org/10.1067/mai.2002.126079
- Godiska, R., Chantry, D., Raport, C. J., Sozzanl, S., Allavena, P., Leviten, D., Mantovani, A. and Gray, P. W. (1997). Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J. Exp. Med. 185, 1595-1604 https://doi.org/10.1084/jem.185.9.1595
- Grewe, M., Gyufko, K., Schopf, E. and Krutmann, J. (1994). Expression of interferon-gamma in atopic eczema. Lancet 343, 25-26 https://doi.org/10.1016/S0140-6736(94)90879-6
- Hamalainen, M., Nieminen, R., Vuorela, P., Heinonen, M., and Moilanen, E. (2007). Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007, 45673
- Han, B. H. and Han, Y. N. (1978). Immunosuppressant activity of cheery bark extract. Kor. J. Pharmacog. 9, 173-175
-
Han, S. K., Song, J. Y., Yun, Y. S. and Yi, S. Y. (2002). Gamma irradiation-reduced
$IFN-{\gamma}$ expression, STAT1 signals, and cellmediated immunity. J. Biochem. Mol. Biol. 35, 583-589 https://doi.org/10.5483/BMBRep.2002.35.6.583 - Hijnen, D., De Bruin-Weller, M., Oosting, B., Lebre C., De Jong, E., Bruijnzeel-Koomen, C. and Knol, E. (2004). Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell-attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis. J. Allergy Clin. Immunol. 113, 334-40 https://doi.org/10.1016/j.jaci.2003.12.007
-
Horikawa, T., Nakayama, T., Hikita, I., Yamada, H., Fujisawa, R., Bito, T., Harada, S., Fukunaga, A., Chantry, D., Gray, P. W., Morita, A., Suzuki, R., Tezuka, T., Ichihashi, M. and Yoshie, O. (2002). IFN-
${\gamma}$ -inducible expression of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in epidermal keratinocytes and their roles in atopic dermatitis. Int. Immunol. 7, 767-773 - Ivashkiv, L. B. and Hu, X. (2004). Signaling by STATs. Arthritis Res. Ther. 6, 159-168 https://doi.org/10.1186/ar1197
- Jakubzick, C., Wen, H., Matsukawa, A., Keller, M., Kunkel, S. L. and Hogaboam, C. M. (2004). Role of CCL4 ligands, CCL17 and CCL22, during schistosoma mansoni egg-induced pulmonary granuloma formation in mice. Am. J. Pathol. 165, 1211-1221 https://doi.org/10.1016/S0002-9440(10)63381-0
- Kakinuma, T., Nakamura, K., Wakugawa, M., Mitsui, H., Tada, Y., Saeki, H., Torii, H., Komine, M., Asahina, A. and Tamaki, K. (2002). Serum macrophage-derived chemokine (MDC) levels are closely related with the disease activity of atopic dermatitis. Clin. Exp. Immunol. 127, 270-273 https://doi.org/10.1046/j.1365-2249.2002.01727.x
- Kanda, N. and Watanabe, S. (2007). Prolactin enhances interferon-g-induced production of CXC ligand 9 (CXCL9), CXCL10, and CXCL11 in human keratinocytes. Endocrinol. 148, 2317-2325 https://doi.org/10.1210/en.2006-1639
- Komine, M. and Kakinuma, T., Kagami, S., Hanakawa, Y., Hashimoto, K., Tamaki, K. (2005). Mechanism of thymus- and activation-regulated chemokine(TARC)/CCL17 production and its modulation by roxithromycin. J. Invest. Dermatol. 125, 491-498 https://doi.org/10.1111/j.0022-202X.2005.23840.x
- Luster, A. D. (2001). Antichemokine immunotherapy for allergic diseases. Allergy Clin. Immunol. 1, 561-567
- Nakazato, J., Kishida, M., Kuroiwa, R., Fujiwara, J., Shimoda, M., and Shinomiya, N. (2008). Serum levels of Th2 chemokines, CCL17, CCl22, and CCl27, were the important markers of severity in infantile atopic dermatitis. Pediatr. Allergy Immunol. 1, 10 https://doi.org/10.1111/j.1399-3038.2007.00692.x
- Noshita, T., Sakaguchi, A., and Funayama, S. (2006). Isolation of ethyl caffeate from the petals of Prunus yedoensis J. Nat. Med. 60, 266-267 https://doi.org/10.1007/s11418-006-0033-7
- Park, E. S., Shin, M. K. and Song, H. J. (1998). A study on the antiallergic effect of cortex betula platyphyllae or cortex pruni serrulatae extract. Kor. J. Herbology. 13, 57-69
- Portengen, L., Sigsgaard, T., Omland, O, Hjort, C., Heederik, D., and Doekes, G. (2002). Low prevalence of atopy in young Danish farmers and farming students born and raised on a farm. Clin. Exp. Allergy. 32, 247-253 https://doi.org/10.1046/j.1365-2222.2002.01310.x
- Rozyk, K. J., Targowski, T., Paluchowska, E., Owczarek, W. and Kucharczyk, A. (2005). Serum thymus and activation-regulated chemokine, Macrophage-derived chemokine and eotaxin as marker of severity of atopic dermatitis. Allergy 60, 685-688 https://doi.org/10.1111/j.1398-9995.2005.00774.x
- Saeki, H. and Tamaki, K. (2006). Thymus and activation regulated chemokine(TARC)/CCL17 and skin diseases. J. Dermatol. Clin. Exp. Allergy 43, 75-84 https://doi.org/10.1016/S1043-4666(03)00221-7
- Shimada, Y., Takehara, K. and Sato, S. (2004). Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, and Mig/CXCL9) are elevated in sera from patients with atopic dermatitis. J. Dermatol. Clin. Exp. Allergy 24, 201-208 https://doi.org/10.1016/j.jdermsci.2004.01.001
-
Strobl, B., Arulampalam, V., Is'harc, H., Newman, S. J., Schlaak, J. F., Watling, D., Costa-Pereira, A. P., Schaper, F., Behrman, I., Sheehan, K. C. F., Schreiber, R. D., Horn, F., Heinrich, P.C. and Kerr, I. M. (2001). A completely foreign receptor can mediate an interferon-
${\gamma}$ -like response. EMBO J. 20, 5431-5442 https://doi.org/10.1093/emboj/20.19.5431. - Vestergaard, C., Yoneyama, H., Murai, M., Nakamura, K., Tamaki, K., Terashima, Y., Imai, T., Yoshie, O., Irimura, T., Mizutani, H. and Matsushima, K. (1999). Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J. Clin. Clin. Exp. Allergy 104, 1097-1105 https://doi.org/10.1172/JCI7613
- Wormald, S., Hilton, D. J., Smyth, G. K. and Speed, T. P. (2006). Proximal genomic localization of STAT1 binding and regulated transcriptional activity. BMC Genomics. 7, 254 https://doi.org/10.1186/1471-2164-7-254
- Xiao, T., Kagami, S., Saeki, H., Sugaya, M., Kakinuma, T., Fujita, H., Yano, S., Mitsui, H., Torii, H., Komine, M., Asahina, A., Nakamura, K. and Tamaki, K. (2003). Both IL-4 and IL-13 inhibit the TNF-α and IFN-γ enhanced MDC production in a human keratinocyte cell line, HaCaT cells. J. Dermatol. Sci. 31, 111-117 https://doi.org/10.1016/S0923-1811(02)00149-4
- Yu, B., Koga, T., Urabe, K., Moroi, Y., Maeda, S., Yanagihara, Y. and Furue, M. (2002). Differential regulation of thymus- and activation-regulated chemokine induced by IL-4, IL-13, TNFalpha and IFN-gamma in human keratinocyte and fibroblast. J. Dermatol. Sci. 30, 29-36 https://doi.org/10.1016/S0923-1811(02)00046-4
Cited by
- Apamin inhibits TNF-α- and IFN-γ-induced inflammatory cytokines and chemokines via suppressions of NF-κB signaling pathway and STAT in human keratinocytes 2017, https://doi.org/10.1016/j.pharep.2017.04.006
- Prunus yedoensisBark Inhibits Lipopolysaccharide-Induced Inflammatory Cytokine Synthesis by IκBα Degradation and MAPK Activation in Macrophages vol.17, pp.4, 2014, https://doi.org/10.1089/jmf.2013.2825
- Dieckol, a Component of Ecklonia cava, Suppresses the Production of MDC/CCL22 via Down-Regulating STAT1 Pathway in Interferon-γ Stimulated HaCaT Human Keratinocytes vol.23, pp.3, 2015, https://doi.org/10.4062/biomolther.2014.141
- Effect of Prunus yedoensis Matsumura extract on the gene expression in HaCaT cells vol.14, pp.3, 2018, https://doi.org/10.1007/s13273-018-0037-x
- Cinnamomum camphora Leaves Alleviate Allergic Skin Inflammatory Responses In Vitro and In Vivo vol.35, pp.3, 2008, https://doi.org/10.5487/tr.2019.35.3.279