DOI QR코드

DOI QR Code

Honokiol Potentiates Pentobarbital-Induced Sleeping Behaviors through GABAA Receptor Cl- Channel Activation

  • 발행 : 2008.12.31

초록

This study was undertaken to investigate whether honokiol could enhance the pentobarbitalinduced sleeping behaviors through $\gamma$-aminobutyric acid (GABA) receptor $Cl^-$ channel activation. Thirty minutes after the oral administration of honokiol, mice were received sodium pentobarbital (42 mg/kg, i.p.). The time elapsed from pentobarbital injection to the loss of the righting reflex was taken as sleeping latency. The time elapsed between the loss and voluntary recovery of the righting reflex was considered as the total sleeping time. Western blot technique and $Cl^-$ sensitive fluorescence probe were used to detect the expression of $GABA_A$ receptor subunits and $Cl^-$ influx in the primary cultured cerebellar granule cells. Honokiol (0.1 and 0.2 mg/kg) prolonged the sleeping time induced by pentobarbital (42 mg/kg) in a dosage-dependent manner. Honokiol (20 and 50 ${\mu}M$) increased $Cl^-$ influx in primary cultured cerebellar granule cells, and selectively increased the $GABA_A$ receptor $\alpha$-subunit expression, but had no effect on the abundance of $\beta$ or $\gamma$-subunits. Chronic treatment with 20 ${\mu}M$ honokiol in primary cultured cerebellar neurons did not affect the abundance of GAD65/67. The results suggested that honokiol could potentiate pentobarbital-induced sleeping through $GABA_A$ receptor $Cl^-$ channel activation.

키워드

참고문헌

  1. Ai, J., Wang, X. and Nielsen, M. (2001). Honokiol and magnolol selectively interact with $GABA_A$ receptor subtypes in vitro. Pharmacology 63, 34-41 https://doi.org/10.1159/000056110
  2. Battle, T. E., Arbiser, J. and Frank, D. A. (2005). The natural product honokiol induces caspase-dependent apoptosis in Bcell chronic lymphocytic leukemia (B-CLL) cells. Blood 106, 690-697 https://doi.org/10.1182/blood-2004-11-4273
  3. Blednov, Y. A., Jung, S., Alva, H., Wallace, D., Rosahl, T., Whiting, P. J. and Harris, R. A. (2003). Deletion of the alpha1 or beta2 subunit of $GABA_A$ receptors reduces actions of alcohol and other drugs. J. Pharmacol. Exp. Ther. 304, 30-36 https://doi.org/10.1124/jpet.102.042960
  4. Chebib, M. and Johnston, G. A. (2000). GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology. J. Med. Chem. 43, 1427-1247 https://doi.org/10.1021/jm9904349
  5. Chiang, C. K., Sheu, M. L., Hung, K. Y., Wu, K. D. and Liu, S. H. (2006). Honokiol, a small molecular weight natural product, alleviates experimental mesangial proliferative glomerulonephritis. Kidney Int. 70, 682-689 https://doi.org/10.1038/sj.ki.5001617
  6. Clark, A. M., El-Feraly, F. S. and Li, W. S. (1981). Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J. Pharm. Sci. 70, 951-952 https://doi.org/10.1002/jps.2600700833
  7. Cz3onkowska, A. I., Krzaoecik, P., Sienkiewicz-Jarosz, H., Siemiatkowski, M., Szyndler, J., Bidzinski, A. and P3aynik, A. (2000). The effects of neurosteroids on picrotoxin-, bicuculline- and NMDA-induced seizures, and a hypnotic effect of ethanol. Pharmacol. Biochem. Behav. 67, 345-353 https://doi.org/10.1016/S0091-3057(00)00369-5
  8. Darias, V., Abdala, S., Martin, H. D., Tello, M. L. and Vega, S. (1998). CNS effects of a series of 1,2,4-triazolyl heterocarboxylic derivatives. Pharmazie 53, 477-481
  9. Fukuyama, Y., Nakade, K., Minoshima, Y., Yokoyama, R., Zhai, H. and Mitsumoto, Y. (2002). Neurotrophic activity of honokiol on the cultures of fetal rat cortical neurons. Bioorg. Med. Chem. Lett. 12, 1163-1166 https://doi.org/10.1016/S0960-894X(02)00112-9
  10. Gottesmann, C. (2002). GABA mechanisms and sleep. Neuroscience 111, 231-239 https://doi.org/10.1016/S0306-4522(02)00034-9
  11. Han, H. S., Ma, Y., Eun, J. S., Hong, J. T. and Oh, K. W. (2007). Anxiolytic-like effects of methanol extract of Zizyphi Spinosi Semen in mice. J. Appl. Pharmacol. 15, 175-181 https://doi.org/10.4062/biomolther.2007.15.3.175
  12. Houston, C. M. and Smart, T. G. (2006). CaMK-II modulation of GABA(A) receptors expressed in HEK293, NG108-15 and rat cerebellar granule neurons. Eur. J. Neurosci. 24, 2504-2514 https://doi.org/10.1111/j.1460-9568.2006.05145.x
  13. Korpi, E. R., Grunder, G. and Luddens, H. (2002). Drug interactions at GABA(A) receptors. Prog. Neurobiol. 67, 113-159 https://doi.org/10.1016/S0301-0082(02)00013-8
  14. Kuribara, H., Kishi, E., Hattori, N,, Okada, M. and Maruyama, Y. (2000). The anxiolytic effect of two oriental herbal drugs in Japan attributed to honokiol from magnolia bark. J. Pharm. Pharmacol. 2, 1425-1429 https://doi.org/10.1211/0022357001777432
  15. Kuribara, H., Stavinoha, W. B. and Maruyama, Y. (1998). Behavioural pharmacological characteristics of honokiol, an anxiolytic agent present in extracts of Magnolia bark, evaluated by an elevated plus-maze test in mice. J. Pharm. Pharmacol. 50, 819-826 https://doi.org/10.1111/j.2042-7158.1998.tb07146.x
  16. Lee, J., Jung, E., Park, J., Jung, K., Lee, S., Hong, S., Park, J., Park, E., Kim, J., Park, S. and Park, D. (2005). Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med. 71, 338-343 https://doi.org/10.1055/s-2005-864100
  17. Liao, J. F., Huang, S. Y., Jan, Y. M., Yu, L. L. and Chen, C. F. (1998). Central inhibitory effects of water extract of Acori graminei rhizoma in mice. J. Ethnopharmacol. 61, 185-193 https://doi.org/10.1016/S0378-8741(98)00042-7
  18. Lin, Y. R., Chen, H. H., Ko, C. H. and Chan, M. H. (2005). Differential inhibitory effects of honokiol and magnolol on excitatory amino acid-evoked cation signals and NMDA-induced seizures. Neuropharmacol. 49, 542-550 https://doi.org/10.1016/j.neuropharm.2005.04.009
  19. Liou, K. T., Shen, Y. C., Chen, C, F., Tsao, C. M. and Tsai, S. K. (2003a). The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur. J. Pharmacol. 15, 19-27 https://doi.org/10.1016/S0014-2999(03)02121-6
  20. Liou, K. T., Shen, Y. C., Chen, C. F., Tsao, C. M. and Tsai, S. K. (2003b). Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res. 992, 159-166 https://doi.org/10.1016/j.brainres.2003.08.026
  21. Liou, K. T., Lin, S. M., Huang, S. S., Chih, C. L. and Tsai, S. K. (2003c). Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats. Planta Med. 69, 130-134 https://doi.org/10.1055/s-2003-37707
  22. Li, Z., Liu, Y., Zhao, X., Pan, X., Yin, R., Huang, C., Chen, L. and Wei, Y. (2008). Honokiol, a natural therapeutic candidate, induces apoptosis and inhibits angiogenesis of ovarian tumor cells. Eur. J. Obstet. Gynecol. Reprod. Biol. 140, 95-102 https://doi.org/10.1016/j.ejogrb.2008.02.023
  23. Martinez, A. L., Dominguez, F., Orozco, S., Chavez, M., Salgado, H., Gonzalez, M. and González-Trujano, M. E. (2006). Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice. J. Ethnopharmacol. 106, 250-255 https://doi.org/10.1016/j.jep.2006.01.003
  24. Maruyama, Y., Kuribara, H., Kishi, E., Weintraub, S. T. and Ito, Y. (2001). Confirmation of the anxiolytic-like effect of dihydrohonokiol following behavioural and biochemical assessments. J. Pharm. Pharmacol. 53, 721-725 https://doi.org/10.1211/0022357011775848
  25. Ma, Y., Han, H., Eun, J. S., Kim, H. C., Hong, J. T. and Oh, K. W. (2007). Sanjoinine A isolated from Zizyphi Spinosi Semen augments pentobarbital-induced sleeping behaviors through the modification of GABA-ergic systems. Biol. Pharm. Bull. 30, 1748-1753 https://doi.org/10.1248/bpb.30.1748
  26. McKernan, R. M. and Whiting, P. J. (1996). Which GABAAreceptor subtypes really occur in the brain? Trends Neurosci. 19, 139-143 https://doi.org/10.1016/S0166-2236(96)80023-3
  27. Olsen, R. W. (1981). GABA-benzodiazepine-barbiturate receptor interactions. J. Neurochem. 37, 1-13 https://doi.org/10.1111/j.1471-4159.1981.tb05284.x
  28. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W. and Sperk, G. (2000). GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101, 815-850 https://doi.org/10.1016/S0306-4522(00)00442-5
  29. Rudolph, U. and Mohler, H. (2006). GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr. Opin. Pharmacol. 6, 18-23 https://doi.org/10.1016/j.coph.2005.10.003
  30. Sheu, M. L., Chiang, C. K., Tsai, K. S., Ho, F. M., Weng, T. I., Wu, H. Y. and Liu, S. H. (2008). Inhibition of NADPH oxidaserelated oxidative stress-triggered signaling by honokiol suppresses high glucose-induced human endothelial cell apoptosis. Free Radic. Biol. Med. 44, 2043-50 https://doi.org/10.1016/j.freeradbiomed.2008.03.014
  31. Sheu, M. L., Liu, S. H. and Lan, K. H. (2007). Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS. ONE. 2, 1096 https://doi.org/10.1371/journal.pone.0001096
  32. Sieghart, W. and Sperk, G. (2002). Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr. Top. Med. Chem. 2, 795-816 https://doi.org/10.2174/1568026023393507
  33. Squires, R. F., Ai, J., Witt, M. R., Kahnberg, P., Saederup, E,. Sterner, O. and Nielsen, M. (1999). Honokiol and magnolol increase the number of [3H] muscimol binding sites three-fold in rat forebrain membranes in vitro using a filtration assay, by allosterically increasing the affinities of low-affinity sites. Neurochem. Res. 24, 1593-1602 https://doi.org/10.1023/A:1021116502548
  34. Ticku, M.K. and Maksay, G. (1983). Convulsant/depressant site of action at the allosteric benzodiazepine-GABA receptor-ionophore complex. Life Sci. 33, 2363-2375 https://doi.org/10.1016/0024-3205(83)90630-6
  35. Wang, F., Li, J., Wu, C., Yang, J., Xu, F. and Zhao, Q. (2003). The GABA(A) receptor mediates the hypnotic activity of melatonin in rats. Pharmacol. Biochem. Behav. 74, 573-578 https://doi.org/10.1016/S0091-3057(02)01045-6
  36. West, M. R. and Molloy, C. R. (1996). A microplate assay measuring chloride ion channel activity. Anal. Biochem. 241, 51-58 https://doi.org/10.1006/abio.1996.0377
  37. Wolfman, C., Viola, H., Marder, M., Wasowski, C., Ardenghi, P. and Izquierdo, I. (1996). Anxioselective properties of 6,3'-dinitroflavone, a high-affinity benzodiazepine receptor ligand. Eur. J. Pharmacol. 318, 23-30 https://doi.org/10.1016/S0014-2999(96)00784-4
  38. Xie, X., Crowder, T. L., Yamanaka, A., Morairty, S. R., Lewinter, R. D., Sakurai, T. and Kilduff, T. S. (2006). GABA(B) receptormediated modulation of hypocretin/orexin neurones in mouse hypothalamus. J. Physiol. 574, 399-414 https://doi.org/10.1113/jphysiol.2006.108266
  39. Yamada, K., Watanabe, Y., Aoyagi, Y. and Ohta, A. (2001). Effect of alkylpyrazine derivatives on the duration of pentobarbital-induced sleep, picrotoxicin-induced convulsion and gamma-aminobutyric acid (GABA) levels in the mouse brain. Biol. Pharm. Bull. 24, 1068-1071 https://doi.org/10.1248/bpb.24.1068

피인용 문헌

  1. Effects of white lotus extracts on sleeping, chloride influx, and oxidation vol.20, pp.4, 2011, https://doi.org/10.1007/s10068-011-0131-5
  2. Rosmarinic Acid Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep through the Activation of GABAA-ergic Systems vol.25, pp.2, 2017, https://doi.org/10.4062/biomolther.2016.035
  3. Enhancement of pentobarbital-induced sleep by apigenin through chloride ion channel activation vol.35, pp.2, 2012, https://doi.org/10.1007/s12272-012-0218-4
  4. Ethanol Extract of the FlowerChrysanthemum morifoliumAugments Pentobarbital-Induced Sleep Behaviors: Involvement of Cl−Channel Activation vol.2011, 2011, https://doi.org/10.1155/2011/109164
  5. 3,4,5-Trimethoxycinnamic acid (TMCA), one of the constituents of Polygalae Radix enhances pentobarbital-induced sleeping behaviors via GABAAergic systems in mice vol.36, pp.10, 2013, https://doi.org/10.1007/s12272-013-0167-6
  6. Channel Activation vol.14, pp.11, 2011, https://doi.org/10.1089/jmf.2010.1529
  7. Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2017.146
  8. Structure-Dependent Activity of Natural GABA(A) Receptor Modulators vol.23, pp.7, 2018, https://doi.org/10.3390/molecules23071512