DOI QR코드

DOI QR Code

Ever Increasing Number of the Animal Model Systems for Attention Deficit/Hyperactivity Disorder: Attention, Please

  • Kim, Hee-Jin (Department of Pharmacy, Sahmyook University) ;
  • Park, Seung-Hwa (Department of Pharmacology, School of Medicine and IBST, Konkuk University) ;
  • Kim, Kyeong-Man (Department of Pharmacology, College of Pharmacy, Chonnam National University) ;
  • Ryu, Jong-Hoon (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Cheong, Jae-Hoon (Department of Pharmacy, Sahmyook University) ;
  • Shin, Chan-Young (Department of Pharmacology, School of Medicine and IBST, Konkuk University)
  • Published : 2008.12.31

Abstract

Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by hyperactivity, inattention, and impulsiveness. Current estimates suggest that 4-12% of school age children are affected by ADHD, which hampers proper social relationship and achievements in school. Even though the exact etiology of the disorder is still in the middle of active investigation, the availability of pharmacological treatments for the disorder suggest that at least the symptoms of ADHD are manageable. To develop drugs with higher efficacy and fewer side effects, it is essential to have appropriate animal models for in vivo drug screening processes. Good animal models can also provide the chances to improve our understanding of the disease processes as well as the underlying etiology of the disorder. In this review, we summarized current animal models used for ADHD research and discussed the point of concerns about using specific animal models.

Keywords

References

  1. Adams, W., Kusljic, S. and van den Buuse, M. (2008). Serotonin depletion in the dorsal and ventral hippocampus: Effects on locomotor hyperactivity, prepulse inhibition and learning and memory. Neuropharmacology. doi:10.1016/j.neuropharm. 2008.06.035
  2. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 121, 65-94 https://doi.org/10.1037/0033-2909.121.1.65
  3. Bruno, K. J., Freet, C. S., Twining, R. C., Egami, K., Grigson, P. S. and Hess, E. J. (2006). Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol. Dis. 25, 206-216 https://doi.org/10.1016/j.nbd.2006.09.009
  4. Burd, L., Klug, M. G., Coumbe, M. J. and Kerbeshian, J. (2003). Children and adolescents with attention deficit-hyperactivity disorder. 1. Prevalence and cost of care. J. Child. Neurol. 18, 555-561 https://doi.org/10.1177/08830738030180080101
  5. Casolini, P., Zuena, A. R., Cinque, C., Matteucci, P., Alema, G. S., Adriani, W., Carpinelli, G., Santoro, F., Alleva, E., Bosco, P., Nicoletti, F., Laviola, G. and Catalani, A. (2005). Sub-neurotoxic neonatal anoxia induces subtle behavioural changes and specific abnormalities in brain group-I metabotropic glutamate receptors in rats. J. Neurochem. 95, 137-145 https://doi.org/10.1111/j.1471-4159.2005.03349.x
  6. Cheon, K. A., Ryu, Y. H., Kim, Y. K., Namkoong, K., Kim, C. H. and Lee, J. D. (2003). Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur. J. Nucl. Med. 30, 306-311 https://doi.org/10.1007/s00259-002-1047-3
  7. Chess, A. C., Keene, C. S., Wyzik, E. C. and Bucci, D. J. (2005). Stimulus processing and associative learning in Wistar and WKHA rats. Behav. Neurosci. 119, 772-780 https://doi.org/10.1037/0735-7044.119.3.772
  8. Dalley, J. W., Theobald, D. E., Pereira, E. A., Li, P. M. and Robbins, T. W. (2002). Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioral performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl). 164, 329-340 https://doi.org/10.1007/s00213-002-1215-y
  9. Davids, E., Zhang, K., Kula, N. S., Tarazi, F. I. and Baldessarini, R. J. (2002). Effects of norepinephrine and serotonin transporterer inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J. Pharmacol. Exp. Ther. 301, 1097-1102 https://doi.org/10.1124/jpet.301.3.1097
  10. Dell'Anna, M. E. (1999). Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav. Brain. Res. 45, 125-134 https://doi.org/10.1016/S0166-4328(05)80078-6
  11. Ferguson, S. A. (2001). A review of rodent models of ADHD. In: Solano, M. V., Arnsten, A. F. T. and Castellanos, F. X. (eds) Stimulant Drugs adnd ADHD, Basic and Clinical Neuroscience. University Press, Oxford. pp 209-220
  12. Ferguson, S. A., Paule, M. G. and Holson, R. R. (1996). Functional effects of ethylazoxymethanol-induced cerebellar hypoplasia in rats. Neurotoxicol. Teratol. 18, 529-537 https://doi.org/10.1016/0892-0362(96)00083-9
  13. Gainetdinov, R. R., Jones, S. R. and Caron, M. G. (1999). Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol. Psychiatr. 46, 303-311 https://doi.org/10.1016/S0006-3223(99)00122-5
  14. Glaser, P. E., Surgener, S. P., Grondin, R., Gash, C. R., Palmer, M., Castellanos, F. X. and Gerhardt, G. A. (2006). Cerebellar neurotransmission in attention-deficit/hyperactivity disorder: does dopamine neurotransmission occur in the cerebellar vermis? J. Neurosci. Methods. 151, 62-67 https://doi.org/10.1016/j.jneumeth.2005.09.019
  15. Greco, B. and Carli, M. (2006). Reduced attention and increased impulsivity in mice lacking NPY Y2 receptors: relation to anxiolytic-like phenotype. Behav. Brain. Res. 169, 325-334 https://doi.org/10.1016/j.bbr.2006.02.002
  16. Hausknecht, K. A., Acheson, A., Farrar, A. M., Kieres, A. K., Shen, R. Y., Richards, J. B. and Sabol, K. E. (2005). Prenatal alcohol exposure causes attention deficits in male rats. Behav. Neurosci. 119, 302-310 https://doi.org/10.1037/0735-7044.119.1.302
  17. Hendley, E. D. and Ohlsson, W. G. (1991). Two new inbred rat strains derived from SHR: WKHA, hyperactive, and WKHT, hypertensive rats. Am. J. Physiol. (Heart Circ Physiol). 261, H583-H589 https://doi.org/10.1152/ajpheart.1991.261.2.H583
  18. Highfield, D. A., Hu, D. and Amsel, A. (1998). Alleviation of xirradiation-based deficit in memory-based learning by Damphetamine: Suggestions for attention deficit/ hyperactivity disorder. Proc. Natl. Acad. Sci. USA. 95, 5785-5788 https://doi.org/10.1073/pnas.95.10.5785
  19. Hirano, M., Rakwal, R., Shibato, J., Sawa, H., Nagashima, K., Ogawa, Y., Yoshida, Y., Iwahashi, H., Niki, E. and Masuo, Y. (2008). Proteomics- and transcriptomics-based screening of differentially expressed proteins and genes in brain of Wig rat: a model for attention deficit hyperactivity disorder (ADHD) research. J. Proteome. Res. 7, 2471-2489 https://doi.org/10.1021/pr800025t
  20. Holson, R. R., Gazzara, R. A., Ferguson, S. A. and Adams, J. (1997). Behavioral effects of low-dose gestational day 11-13 retinoic acid exposure. Neurotoxicol. Teratol. 19, 355-362 https://doi.org/10.1016/S0892-0362(97)00041-X
  21. Hunziker, M. H., Saldana, R. L. and Neuringer, A. (1996). Behavioral variability in SHR and WKY rats as a function of rearing environment and reinforcement contingency. J. Exp. Anal. Behav. 65, 129-144 https://doi.org/10.1901/jeab.1996.65-129
  22. Kamimura, E., Ueno, Y., Tanaka, S., Sawa, H., Yoshioka, M., Ueno, K. I., Inoue, T., Li, X., Koyama, T., Ishikawa, R. and Nagashima, K. (2001). New rat model for attention deficit hyperactive disorder (ADHD). Comp. Med. 51, 245-251
  23. Kayl, A. E., Moore, B. D. 3rd., Slopis, J. M., Jackson, E. F. and Leeds, N. E. (2000). Quantitative morphology of the corpus callosum in children with neurofibromatosis and attention-deficit hyperactivity disorder. J. Child. Neurol. 15, 90-96 https://doi.org/10.1177/088307380001500206
  24. Kohlert, J. G. and Bloch, G. J. (1993). A rat model for attention deficit-hyperactivity disorder. Physiol. Behav. 53, 1215-1218 https://doi.org/10.1016/0031-9384(93)90382-P
  25. Kimura-Kuroda, J., Nagata, I. and Kuroda, Y. (2007). Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells: a possible causal factor for developmental brain disorders? Chemosphere 67, S412-S420 https://doi.org/10.1016/j.chemosphere.2006.05.137
  26. Kostrzewa, R. M., Brus, R., Kalbfleisch, J. H., Perry, K. W. and Fuller, R. W. (1994). Proposed animal model of attention deficit hyperactivity disorder. Brain Res. Bull. 34, 161-167 https://doi.org/10.1016/0361-9230(94)90013-2
  27. Leo, D., Sorrentino, E., Volpicelli, F., Eyman, M., Greco, D., Viggiano, D., di. P. U. and Perrone-Capano, C. (2003). Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci. Biobehav. Rev. 27, 661-669 https://doi.org/10.1016/j.neubiorev.2003.08.009
  28. Li, W., Cui, Y., Kushner, S. A., Brown, R. A., Jentsch, J. D., Frankland, P. W., Cannon, T. D. and Silva, A. J. (2005). The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr. Biol. 15, 1961-1967 https://doi.org/10.1016/j.cub.2005.09.043
  29. Magara, F., Ricceri, L., Wolfer, D. P. and Lipp, H. P. (2000). The acallosal mouse strain I/LnJ: A putative model of ADHD? Neurosci. Biobehav. Rev. 24, 45-50 https://doi.org/10.1016/S0149-7634(99)00051-2
  30. Mandolesi, L., Leggio, M. G., Spirito, F., Federico, F. and Petrosini, L. (2007). Is the cerebellum involved in the visuolocomotor associative learning? Behav. Brain. Res. 184, 47-56 https://doi.org/10.1016/j.bbr.2007.06.014
  31. Mill, J., Curran, S., Kent, L., Gould, A., Huckett, L., Richards, S., Taylor, E. and Asherson, P. (2002). Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am. J. Med. Genet. 114, 269-271 https://doi.org/10.1002/ajmg.10253
  32. Molina-Holgado, E., Dewar, K., Descarries, L. and Reader, T. A. (1994). Altered dopamine and serotonin metabolism in the dopamine-denervated and serotonin-hyperinnervated neostriatum of adult rat after neonatal 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 270, 713-721
  33. Mostofsky, S. H., Reiss, A. L., Lockhart, P. and Denckla, M. B. (1998). Evaluation of cerebellar size in attention-deficit hyperactivity disorder. J. Child. Neurol. 13, 434-439 https://doi.org/10.1177/088307389801300904
  34. Nigg, J. T. (2008). ADHD, lead exposure and prevention: how much lead or how much evidence is needed? Expert. Rev. Neurother. 8, 519-521 https://doi.org/10.1586/14737175.8.4.519
  35. Oorschot, D. E., Voss, L., Covey, M. V., Bilkey, D. K. and Saunders, S. E. (2007). ADHD-like hyperactivity, with no attention deficit, in adult rats after repeated hypoxia during the equivalent of extreme prematurity. J. Neurosci. Methods 166, 315-322 https://doi.org/10.1016/j.jneumeth.2007.01.010
  36. Pattij, T. and Vanderschuren, L. J. (2008). The neuropharmacology of impulsive behaviour. Trends Pharmacol. Sci. 29, 192-199 https://doi.org/10.1016/j.tips.2008.01.002
  37. Russell, V. A., Sagvolden, T. and Johansen, E. B. A. (2005). Animal models of attention-deficit hyperactivity disorder. Behav. Brain Funct. 1, 9 https://doi.org/10.1186/1744-9081-1-9
  38. Sagvolden, T. (2000). Behavioral validation of the spontane ously hypertensive rat (SHR) as an animal model of attentiondeficit/hyperactivity disorder (AD/HD). Neurosci. Biobehav. Rev. 24, 31-39 https://doi.org/10.1016/S0149-7634(99)00058-5
  39. Sarkissian, C. N., Boulais, D. M., McDonald, J. D. and Scriver, C. R. (2000). A heteroallelic mutant mouse model: a new orthologue for human hyperphenylalaninemia. Mol. Genet. Metabol. 69, 188-194 https://doi.org/10.1006/mgme.2000.2974
  40. Shaywitz, B. A., Yager, R. D., Klopper, J. H. (1976). Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191, 305-308 https://doi.org/10.1126/science.942800
  41. Siesser, W. B., Zhao, J., Miller, L. R., Cheng, S. Y. and McDonald, M. P. (2006). Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes. Brain Behav. 5, 282-297 https://doi.org/10.1111/j.1601-183X.2005.00161.x
  42. Taylor, E. (1998). Clinical foundations of hyperactivity research. Behav. Brain Res. 94, 11-24 https://doi.org/10.1016/S0166-4328(97)00165-4
  43. Trinh J. V, Nehrenberg D. L, Jacobsen J. P, Caron M. G. and Wetsel W. C. (2003) Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neuroscience 118, 297-310 https://doi.org/10.1016/S0306-4522(03)00165-9
  44. Tsai, S. J. (2007). Attention-deficit hyperactivity disorder may be associated with decreased central brain-derived neurotrophic factor activity: clinical and therapeutic implications. Med. Hypotheses 68, 896-899 https://doi.org/10.1016/j.mehy.2006.06.025
  45. Ueno, K., Togashi, H., Matsumoto, M,, Ohashi, S., Saito, H. and Yoshioka, M. (2002). Alpha4beta2 nicotinic acetylcholine receptor activation ameliorates impairment of spontaneous alternation behavior in stroke-prone spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder. J. Pharmacol. Exp. Ther. 302, 95-100 https://doi.org/10.1124/jpet.302.1.95
  46. Ujhzy, E., Schmidtov, M., Dubovick, M., Navarova, J., Brucknerov, I. and Mach, M. (2006). Neurobehavioural changes in rats after neonatal anoxia: effect of antioxidant stobadine pretreatment. Neuro. Endocrinol. Lett. 27 Suppl 2, 82-85
  47. van den Bergh, F. S., Bloemarts, E., Chan, J. S., Groenink, L., Olivier, B. and Oosting, R. S. (2006). Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol. Biochem. Behav. 83, 380-390 https://doi.org/10.1016/j.pbb.2006.02.018
  48. Viggiano, D., Vallone, D., Welzl, H. and Sadile, A. G. (2002). The Naples High- and Low-Excitability rats: Selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system. Behav. Genet. 32, 315-333 https://doi.org/10.1023/A:1020210221156
  49. Winstanley, C. A., Dalley, J. W., Theobald, D. E. and Robbins, T. W. (2003). Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology (Berl). 170, 320-331 https://doi.org/10.1007/s00213-003-1546-3
  50. Watanabe, Y., Fujita, M., Ito, Y., Okada, T., Kusuoka, H. and Nishimura, T. (1997). Brain dopamine transporter in spontaneously hypertensive rats. J. Nucl. Med. 38, 470-474
  51. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Suim M. Q., Liang, M., Tian, L. X., Jiang, T. Z. and Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain. Dev. 29, 83-91 https://doi.org/10.1016/j.braindev.2006.07.002
  52. Zhang, K., Davids, E., Tarazi, F. I. and Baldessarini, R. J. (2002). Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology (Berl) 161, 100-106 https://doi.org/10.1007/s00213-002-1018-1

Cited by

  1. Effects of Red Ginseng on Neonatal Hypoxia-induced Hyperacitivity Phenotype in Rats vol.34, pp.1, 2008, https://doi.org/10.5142/jgr.2010.34.1.008
  2. Neuroadaptations Involved in Long-Term Exposure to ADHD Pharmacotherapies: Alterations That Support Dependence Liability of These Medications vol.19, pp.1, 2008, https://doi.org/10.4062/biomolther.2011.19.1.009
  3. Animal models of attention‐deficit hyperactivity disorder (ADHD) vol.81, pp.2, 2008, https://doi.org/10.1002/jdn.10089