DOI QR코드

DOI QR Code

A First-principles Study on the Effects on Magnetism of Si Impurity in BCC Fe by Considering Spin-orbit Coupling

스핀-궤도 상호작용을 고려한 Si 불순물이 BCC Fe의 자성에 미치는 영향에 대한 제일원리연구

  • Rahman, Gul (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Kim, In-Gee (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Chang, Sam-Kyu (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology)
  • ;
  • 김인기 (포항공과대학교 철강대학원) ;
  • 장삼규 (포항공과대학교 철강대학원)
  • Published : 2008.12.31

Abstract

The effects of Si impurity on electronic structures and magnetism of bcc Fe are investigated by using a first-principles method by considering spin-orbit coupling. In order to describe the Si impurity, a 27 atomic bcc Fe supercell has been considered. The Kohn-Sham equation was solved in terms of the all-electron full-potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). The effects of spin-orbit coupling were calculated self-consistently by considering spin-diagonal terms based on second variation method. For the ferromagnetic (FM) state without considering SOC, the spin magnetic moment of the Si impurity was calculated to be $-0.143{\mu}B$, while the magnetic moments of Fe atoms were calculated to be $2.214{\mu}B$, $2.327{\mu}B$, and $2.354{\mu}B$ in away from the Si atom, respectively. However, the FM state with considering SOC, the spin magnetic moment of the Si impurity was calculated to be $-0.144{\mu}B$, which is not affected significantly by SOC, but the spin magnetic moments of Fe atoms were calculated $2.189{\mu}B$, $2.310{\mu}B$, and $2.325{\mu}B$, respectively, which are much reduced value compared to those of the FM state without SOC. Comparing the total charge density and spin density, those features are thought to be originated by the screening distortions of the Fe $t_{2g}$ orbital, which can be obtained by considering SOC.

Si이 체심입방구조(body centered cubic; bcc) Fe에 불순물로 포함된 경우에 Fe의 전자구조와 자성에 미치는 영향을 스핀-궤도 상호작용(spin-orbit coupling, SOC)을 고려한 제일원리방법을 통하여 연구하였다. Si 불순물의 효과를 기술하기 위하여 27개의 원자가 포함된 bcc Fe 초격자 구조를 고려하였다. 제일원리방법은 전전자 총퍼텐셜선형보강평면파(all-electron full-potential linearized augmented plane wave, FLAPW) 방법을 일반기울기 근사(generalized gradient approximation, GGA) 하에서 계산하였다. 스핀-궤도 상호작용은 스핀대각항 만을 고려한 이차변분방법을 이용하여 자체충족적으로 계산하였다. SOC를 고려하지 않은 강자성(ferromagnetic, FM) 상태의 경우 Si 불순물의 경우에는 $-0.143{\mu}B$의 스핀 자기모멘트가 계산되었으며, Fe 원자가 Si 불순물에서 멀어지면서 각각 $2.214{\mu}B$, $2.327{\mu}B$, 및 $2.354{\mu}B$의 값을 얻었다. 그러나, SOC를 고려한 경우 Si 불순물의 스핀 자기모멘트는 $-0.144{\mu}B$로 계산되어 SOC의 효과가 크지 않았으나, Fe 원자의 경우 각각 $2.189{\mu}B$, $2.310{\mu}B$, 및 $2.325{\mu}B$로 계산되어 SOC를 고려한 경우 스핀 자기모멘트 값이 줄어드는 것을 알 수 있었다. 총전하 및 스핀밀도의 비교와 상태밀도의 비교를 통하여 이러한 현상은 Si 불순물에 의한 영향을 가리는데 참여하는 Fe 원자의 $t_{2g}$ 전자 궤도의 변형의 효과로서 SOC를 고려할 때만 얻을 수 있다.

Keywords

References

  1. F. J. Humphreys and M. Hatherly, 'Recrystallization and related annealing phenomena' (Pergamon, Oxford, 1996) pp. 407-412
  2. N. I. Kulikov, D. Fristot, A. V. Postnikov, and J. Hugel, Comp. Mater. Sci., 17, 196 (2000) https://doi.org/10.1016/S0927-0256(00)00023-9
  3. N. I. Kulikov, D. Fristot, J. Hugel, and A. V. Postnikov, Phys. Rev. B, 66, 014206 (2002) https://doi.org/10.1103/PhysRevB.66.014206
  4. T. Khmelevska, S. Khmelevskyi, A. V. Ruban, and P. Mohn, J. Phs.: Condens. Matter, 18, 6677 (2008)
  5. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981) https://doi.org/10.1103/PhysRevB.24.864
  6. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B, 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  7. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  8. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3856 (1996)
  9. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78, 1396(E) (1997)
  10. 장영록, 송기명, 이재일, 한국자기학회지, 17(3), 109 (2007) https://doi.org/10.4283/JKMS.2007.17.3.109
  11. 김영구, 이재일, 한국자기학회지, 17(4), 147 (2007) https://doi.org/10.4283/JKMS.2007.17.4.147
  12. Y. J. Jin and J. I. Lee, J. Magn., 12, 59 (2007) https://doi.org/10.4283/JMAG.2007.12.2.059
  13. 조이현, B. Bialek, 이재일, 한국자기학회지, 18(4), 131 (2008) https://doi.org/10.4283/JKMS.2008.18.4.131
  14. 조이현, B. Bialek, 이재일, 한국자기학회지, 18(5), 163 (2008) https://doi.org/10.4283/JKMS.2008.18.5.163
  15. B. Bialek and J. I. Lee, J. Magn., 12, 93 (2008) https://doi.org/10.4283/JMAG.2007.12.3.093
  16. Y.-R. Jang and J. I. Lee, J. Magn., 13, 7 (2008) https://doi.org/10.4283/JMAG.2008.13.1.007
  17. R. Kohlhaas, P. Donner, and N. Schmitz-Pranghe, Z. Angew. Phys., 23, 245 (1967)
  18. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  19. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188 (1976) https://doi.org/10.1103/PhysRevB.13.5188
  20. J. H. Lee, T. Shishidou, and A. J. Freeman, Phys. Rev. B, 66, 233102 (2002) https://doi.org/10.1103/PhysRevB.66.233102
  21. D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107 (1977) https://doi.org/10.1088/0022-3719/10/16/019
  22. R. Wu, D. Wang, and A. J. Freeman, J. Magn. Magn. Mater., 132, 103 (1994) https://doi.org/10.1016/0304-8853(94)90305-0
  23. M. Weinert, I. G. Kim, J.-H. Song, L. Ye, and A. J. Freeman, private communications
  24. G. Bertotti, A. R. Ferchmin, E. Fiorillo, K. Fukamichi, K. Kobe, and S. Roth, 'Magnetic alloys for technical applications: Soft Magnetic Alloys, Invar and Elinvar Alloys (Landolt Börnstein New Series vol III/19il)' (Springer, Berlin, 1994)
  25. O. Madelung, 'Introduction to Solid-State Theory' (Springer, Berlin, 1996) pp. 387-390