DOI QR코드

DOI QR Code

Effect of Carbon-coated Silicon/Graphite Composite Anode on the Electrochemical Properties

  • Kim, Hyung-Sun (Battery Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Chung, Kyung-Yoon (Battery Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Cho, Byung-Won (Battery Research Center, Korea Institute of Science and Technology (KIST))
  • Published : 2008.10.20

Abstract

The effects of carbon-coated silicon/graphite (Si/Gr.) composite anode on the electrochemical properties were investigated. The nanosized silicon particle shows a good cycling performance with a reasonable value of the first reversible capacity as compared with microsized silicon particle. The carbon-coated silicon/graphite composite powders have been prepared by pyrolysis method under argon/10 wt% propylene gas flow at $700{^{\circ}C}$ for 7 h. Transmission electron microscopy (TEM) analysis indicates that the carbon layer thickness of 5 nm was coated uniformly onto the surface silicon powder. It is confirmed that the insertion of lithium ions change the crystalline silicon phase into the amorphous phase by X-ray diffraction (XRD) analysis. The carbon-coated composite silicon/graphite anode shows excellent cycling performance with a reversible value of 700 mAh/g. The superior electrochemical characteristics are attributed to the enhanced electronic conductivity and low volume change of silicon powder during cycling by carbon coating.

Keywords

References

  1. Winter, M.; Besenhard, J. O. Electrochim. Acta 1991, 45, 31
  2. Huggins, R. A. Solid State Ionics 1998, 113, 57 https://doi.org/10.1016/S0167-2738(98)00275-6
  3. Li, H.; Huang, X.; Chen, L.; Wu, Z.; Liang, Y. Electrochem. Solid State Lett. 1999, 2, 547 https://doi.org/10.1149/1.1390899
  4. Doh, C. H.; Kim, S. I.; Jeong, K. Y.; Jin, B. S.; An, H. K.; Min, B. C.; Moon, S. I.; Yun, M. S. Bull. Korean Chem. Soc. 2006, 27, 1175 https://doi.org/10.5012/bkcs.2006.27.8.1175
  5. Wen, C. J.; Huggins, R. A. J. Solid State Chem. 1996, 37, 271
  6. Amezawa, K.; Yamamoto, N.; Tomii, Y.; Ito, Y. J. Electrochem. Soc. 1998, 145, 986
  7. Anami, A.; Huggins, R. A. J. Power Sources 1992, 38, 351 https://doi.org/10.1016/0378-7753(92)80125-U
  8. Weydanz, W. J.; Wolhlfahrt-Mehrens, M.; Huggins, R. A. J. Power Sources 1999, 81-82, 237 https://doi.org/10.1016/S0378-7753(99)00139-1
  9. Lee, H. Y.; Lee, S. M. Electrochemistry Communications 2004, 6, 465 https://doi.org/10.1016/j.elecom.2004.03.005
  10. Dimov, N.; Kugino, S.; Yoshio, M. J. Power Sources 2004, 136, 108 https://doi.org/10.1016/j.jpowsour.2004.05.012
  11. Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Science 1997, 276, 1395 https://doi.org/10.1126/science.276.5317.1395
  12. Dimov, N.; Kugino, S.; Yoshio, M. Electrochim. Acta 2003, 48, 1579 https://doi.org/10.1016/S0013-4686(03)00030-6
  13. Yang, J.; Wang, B. F.; Liu, Y.; Xie, J. Y.; Wen, Z. S. Electrochem. Solid-State Lett. 2003, 6, A154 https://doi.org/10.1149/1.1585251
  14. Dimov, N.; Fukuda, K.; Umeno, T.; Kugino, S.; Yoshio, M. J. Power Sources 2003, 114, 88 https://doi.org/10.1016/S0378-7753(02)00533-5
  15. Liu, W.; Guo, Z.; Young, W.; Shieh, D.; Wu, H.; Yang, M.; Wu, N. J. Power Sources 2005, 140, 139 https://doi.org/10.1016/j.jpowsour.2004.07.032
  16. Zhang, Z.; Dewan, C.; Kothari, S.; Mitra, S.; Teeterg, D. Materials Science and Engineering B 2005, 116, 363 https://doi.org/10.1016/j.mseb.2004.05.049
  17. Obrovac, M. N.; Christensen, L. Electrochemical and Solid-State Lett. 2004, 7, A93 https://doi.org/10.1149/1.1652421
  18. Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838 https://doi.org/10.1149/1.1739217
  19. Guo, Z. P.; Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Power Sources 2005, 146, 448 https://doi.org/10.1016/j.jpowsour.2005.03.112
  20. Kim, J.; Kim, H.;, Sohn, H. Electrochemistry Communications 2005, 7, 557 https://doi.org/10.1016/j.elecom.2005.03.013
  21. Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1996, 144, 2045 https://doi.org/10.1149/1.1837740
  22. Li, H.; Huang, X.; Chen, L.; Zhou, G.; Zhang, Z.; Yu, D.; Mo, Y.; Pei, N. Solid State Ionics 2000, 135, 181 https://doi.org/10.1016/S0167-2738(00)00362-3

Cited by

  1. Nanostructured silicon for high capacity lithium battery anodes vol.4, pp.1, 2011, https://doi.org/10.1039/C0EE00281J
  2. Anode Materials vol.19, pp.1, 2013, https://doi.org/10.7464/ksct.2013.19.1.044
  3. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes vol.8, pp.5, 2015, https://doi.org/10.1007/s12274-014-0659-9
  4. Improved Cycling Performance of Si Thin Film Anode for Lithium Rechargeable Batteries vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2441
  5. Electrochemical Characteristics of Carbon-coated Si/Cu/graphite Composite Anode vol.30, pp.7, 2008, https://doi.org/10.5012/bkcs.2009.30.7.1607
  6. Surface-modified silicon nanowire anodes for lithium-ion batteries vol.196, pp.20, 2011, https://doi.org/10.1016/j.jpowsour.2011.05.059
  7. Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries and assessment criteria from an industrial perspective vol.13, pp.4, 2008, https://doi.org/10.1007/s11708-019-0650-y