DOI QR코드

DOI QR Code

ZnO Nanoparticles with Hexagonal Cone, Hexagonal Plate, and Rod Shapes: Synthesis and Characterization

  • Kim, Sun-Young (Department of Chemistry, Kyunghee University) ;
  • Lee, In-Su (College of Environment and Applied Chemistry, Kyunghee University) ;
  • Yeon, Yun-Seon (Department of Chemistry, Kyunghee University) ;
  • Park, Seung-Min (Department of Chemistry, Kyunghee University) ;
  • Song, Jae-Kyu (Department of Chemistry, Kyunghee University)
  • Published : 2008.10.20

Abstract

The roles of coordinating ligands (TOPO, OA, HDA, and TDPA) for the synthesis of ZnO nanoparticles are investigated. Various shapes (hexagonal cone, hexagonal plate, and rod) and sizes (5-100 nm) of ZnO nanoparticles are prepared in relation to the coordinating ligands. The hexagonal shapes ($\leq$ 100 nm) are synthesized with TOPO and OA, while smaller size nanorods (5 ${\times}$ 30 nm) are with TOPO and TDPA. The relative intensities of two distinctive emission bands centered at 385 and 500 nm, which are related to the exciton and defect states, respectively, depend on the crystal qualities of ZnO nanoparticles affected by the coordinating ligands. The intense UV emissions with the reduced visible emissions are found in the monodisperse nanoparticles such as hexagonal cones and nanorods, suggesting that the monodispersity as well as the crystallinity is closely related to the coordinating ligands. The blue-shift of photoluminescence and absorption edge is observed in the nanorods, because the sizes of the nanorods are in the quantum confinement regime.

Keywords

References

  1. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897 https://doi.org/10.1126/science.1060367
  2. Cao, H.; Xu, J. Y.; Zhang, D. Z.; Chang, S.-H.; Ho, S. T.; Seeling, E. W.; Liu, X.; Chang, R. P. H. Phys. Rev. Lett. 2000, 84, 5584 https://doi.org/10.1103/PhysRevLett.84.5584
  3. Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koinuma, H.; Kawasaki, M. Nat. Mater. 2005, 4, 42 https://doi.org/10.1038/nmat1284
  4. Troys, C. T. Photonics Spectra 1997, 31, 34
  5. Kang, H. S.; Kang, J. S.; Kim, J. W.; Lee, S. Y. J. Appl. Phys. 2004, 95, 1246 https://doi.org/10.1063/1.1633343
  6. Studenikin, S. A.; Golego, N.; Cocivera, M. J. Appl. Phys. 1998, 84, 2287 https://doi.org/10.1063/1.368295
  7. Vanheusden, K.; Seager, C. H.; Warren, W. L.; Tallant, D. R.; Voigt, J. A. Appl. Phys. Lett. 1996, 68, 403 https://doi.org/10.1063/1.116699
  8. Wu, L.; Wu, Y.; Pan, X.; Kong, F. Opt. Mater. 2006, 28, 418 https://doi.org/10.1016/j.optmat.2005.03.007
  9. Zhang, S. B.; Wei, S. H.; Zunger, A. Phys. Rev. B 2001, 63, 075205 https://doi.org/10.1103/PhysRevB.63.075205
  10. Tuomisto, F.; Saarinen, K.; Look, D. C.; Farlow, G. C. Phys. Rev. B 2005, 72, 085206 https://doi.org/10.1103/PhysRevB.72.085206
  11. Reynolds, D. C.; Look, D. C.; Jogai, B. J. Appl. Phys. 2001, 89, 6189 https://doi.org/10.1063/1.1356432
  12. Guo, B.; Qiu, Z. R.; Wong, K. S. Appl. Phys. Lett. 2003, 82, 2290 https://doi.org/10.1063/1.1566482
  13. Li, D.; Leung, Y. H.; Djurisic, A. B.; Liu, Z. T.; Xie, M. H.; Shi, S. L.; Xu, S. J.; Chan, W. K. Appl. Phys. Lett. 2004, 85, 1601 https://doi.org/10.1063/1.1786375
  14. Rossi, F.; Goldoni, G.; Molinari, E. Phys. Rev. Lett. 1997, 78, 3527 https://doi.org/10.1103/PhysRevLett.78.3527
  15. Choi, H.-W.; Woo, H.-J.; Kim, J.-K.; Kim, G.-D.; Hong, W.; Ji, Y.- Y. Bull. Korean Chem. Soc. 2004, 25, 525 https://doi.org/10.5012/bkcs.2004.25.4.525
  16. Senger, R. T.; Bajaj, K. K. Phys. Rev. B 2003, 68, 45313 https://doi.org/10.1103/PhysRevB.68.045313
  17. Gu, Y.; Kuskovsky, I. L.; Yin, M.; O'Brien, S.; Neumark, G. F. Appl. Phys. Lett. 2004, 85, 3833 https://doi.org/10.1063/1.1811797
  18. Hsu, W.-T.; Lin, K.-F.; Hsieh, W.-F. Appl. Phys. Lett. 2007, 91, 181913 https://doi.org/10.1063/1.2805192
  19. Joo, J.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Adv. Mater. 2005, 17, 1873 https://doi.org/10.1002/adma.200402109
  20. Cozzoli, P. D.; Curri, M. L.; Agostiano, A.; Leo, G.; Lomascolo, M. J. Phys. Chem. B 2003, 107, 4756 https://doi.org/10.1021/jp027533+
  21. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nanolett. 2001, 1, 207 https://doi.org/10.1021/nl0155126
  22. Qu, L.; Peng, A.; Peng, X. Nanolett. 2001, 1, 333 https://doi.org/10.1021/nl0155532
  23. Qu, L.; Peng, X. J. Am. Chem. Soc. 2001, 124, 2049 https://doi.org/10.1021/ja017002j
  24. Mekis, I.; Talapin, D. V.; Kornowski, A.; Haase, M.; Weller, H. J. Phys. Chem. B 2003, 107, 7454 https://doi.org/10.1021/jp0278364
  25. Wu, D.; Kordesch, M. E.; Van Patten, P. G. Chem. Mater. 2005, 17, 6436 https://doi.org/10.1021/cm050799j
  26. Brus, L. E. J. Chem. Phys. 1984, 80, 4403 https://doi.org/10.1063/1.447218
  27. Hyberstsen, M. S. Phys. Rev. Lett. 1994, 72, 1514 https://doi.org/10.1103/PhysRevLett.72.1514
  28. Efros, A. L.; Rosen, M. Annu. Rev. Mater. Res. 2000, 30, 475 https://doi.org/10.1146/annurev.matsci.30.1.475
  29. Andersen, K. E.; Fong, C. Y.; Pickett, W. E. J. Non Cryst. Solids 2002, 299, 1105 https://doi.org/10.1016/S0022-3093(01)01132-2
  30. Fu, Z. D.; Cui, Y. S.; Zhang, S. Y.; Chen, J.; Yu, D. P.; Zhang, S. L.; Niu, L.; Jiang, J. Z. Appl. Phys. Lett. 2007, 90, 263113 https://doi.org/10.1063/1.2750527
  31. Fu, H.; Zunger, A. Phys. Rev. B 1997, 56, 1496 https://doi.org/10.1103/PhysRevB.56.1496
  32. Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, Al. L.; Rosen, M. Phys. Rev. Lett. 1995, 75, 3728 https://doi.org/10.1103/PhysRevLett.75.3728
  33. Lin, K.-F.; Cheng, H.-M.; Hsu, H.-C.; Lin, L.-J.; Hsieh, W.-F. Chem. Phys. Lett. 2005, 409, 208 https://doi.org/10.1016/j.cplett.2005.05.027
  34. Kim, S. Y.; Yeon, Y. S.; Park, S. M.; Kim, J. H.; Song, J. K. Chem. Phys. Lett. 2008, 462, 100 https://doi.org/10.1016/j.cplett.2008.07.079

Cited by

  1. Synthesis of Layered Organic-Inorganic Nanocomposites of Zinc and Copper by Laser Ablation in Liquid vol.2012, pp.1687-9511, 2012, https://doi.org/10.1155/2012/910761
  2. The features of the synthesis of ZnO nanostructures by laser ablation of zinc in water-surfactant solutions vol.50, pp.3, 2012, https://doi.org/10.1134/S0018151X12030121
  3. Facile synthesis of highly crystalline ZnO nanorods with controlled aspect ratios and their optical properties vol.19, pp.11, 2017, https://doi.org/10.1039/C7CE00196G
  4. Ethylene Glycol Assisted Hydrothermal Synthesis of Flower-Like and Sphere-Like ZnO vol.148-149, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.148-149.849
  5. DFT/TD-DFT study on the electronic and spectroscopic properties of hollow cubic and hollow spherical (ZnO)m quantum dots interacting with CO, NO2 and SO3 molecules vol.124, pp.3, 2018, https://doi.org/10.1007/s00339-018-1698-y
  6. Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO vol.30, pp.10, 2008, https://doi.org/10.5012/bkcs.2009.30.10.2199
  7. Defect states of ZnO nanoparticles: Discrimination by time-resolved photoluminescence spectroscopy vol.107, pp.8, 2008, https://doi.org/10.1063/1.3382915
  8. Nonlinear Optical Properties of ZnO vol.31, pp.9, 2010, https://doi.org/10.5012/bkcs.2010.31.9.2675
  9. Size‐induced structural transition in ZnO prismatic nanoparticles vol.249, pp.3, 2008, https://doi.org/10.1002/pssb.201147356
  10. Ligand mediated tuning of the electronic energy levels of ZnO nanoparticles vol.3, pp.2, 2008, https://doi.org/10.1039/c2ra22429a
  11. Zinc Oxide Nanoparticle Synthesis, Characterization, and Their Effect on Mechanical, Barrier, and Optical Properties of HPMC-Based Edible Film vol.14, pp.3, 2008, https://doi.org/10.1007/s11947-020-02566-y