DOI QR코드

DOI QR Code

The Synthesis of a High Yield PbSe Quantum Dots by Hot Solution Method

  • Baek, In-Chan (KRICT-EPEL Global Research Laboratory, Advanced Material Devision, Korea Research Institute of Chemical Technology) ;
  • Seok, Sang-Il (KRICT-EPEL Global Research Laboratory, Advanced Material Devision, Korea Research Institute of Chemical Technology) ;
  • Chung, Yong-Chae (Department of Materials and Science Engineering, Hanyang University)
  • Published : 2008.09.30

Abstract

Colloidal solutions of crystalline PbSe nanoparticles have been synthesized by hot solution chemical process using PbO in oleic acid and tributylphosphine (TBP) bonded selenium. The use of TBP as a capping agent along with oleic acid gives a very good yield (around 10% at 180 ${^{\circ}C}$) with an average diameter of particle of about < 6.6 nm. The effects of temperature on size and production yield of PbSe quantum dots are studied. Xray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and UV/VIS/NIR absorption spectroscopy were used to characterize the samples.

Keywords

References

  1. Alivisatos, A. P. Sci. Am. 2001, 285, 66
  2. Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D. S.; Alivisatos, A. P. M.; Sauer, S.; Weiss, Opt. Lett. 2001, 26, 825 https://doi.org/10.1364/OL.26.000825
  3. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Sauer, M.; Weiss, S. Opt. Lett. 2001, 26, 825 https://doi.org/10.1364/OL.26.000825
  4. Steckel, J. S.; Coe-Sullivan, S.; Bulovic, V.; Bawendi, M. G. Adv. Mater. 2003, 15, 1862 https://doi.org/10.1002/adma.200305449
  5. Greenham, N. C.; Peng, X.; Alivisatos, A. P. Synth. Met. 1997, 84, 545 https://doi.org/10.1016/S0379-6779(97)80852-1
  6. Lee, H. J.; Kim, D.-Y.; Yoo, J. S.; Bang, J.; Kim, S.; Park, S. M. Bull. Korean Chem. Soc. 2007, 28, 953 https://doi.org/10.5012/bkcs.2007.28.6.953
  7. Lee, H. J.; Yum, J. H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Gratzel, M.; Nazeeruddin, M. K. J. Phys. Chem. C 2008, 112, 11600 https://doi.org/10.1021/jp802572b
  8. Huynh, W. U.; Dittmer, J. J.; Teclemari, N.; Milliron, J.; Alivisatos, A. P.; Barnham, K. W. J. Phys. Rev. B 2003, 67, 115326 https://doi.org/10.1103/PhysRevB.67.115326
  9. Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A. V.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Science 2000, 290, 314 https://doi.org/10.1126/science.290.5490.314
  10. Kazes, M.; Lewis, D. Y.; Ebenstein, Y.; Mokari, T.; Banin, U. Adv. Mater. 2002, 14, 317 https://doi.org/10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U
  11. Du, H.; Chen, C.; Krishanan, R.; Krauss, T. D.; Harbold, J. M.; Wise, F. W.; Thomas, M. G.; Silcox, J. Nano Lett. 2002, 2, 1321 https://doi.org/10.1021/nl025785g
  12. Schaller, R. D.; Klimov, V. I. Phy. Rev. Lett. 2004, 92, 186601 https://doi.org/10.1103/PhysRevLett.92.186601
  13. Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Nature 2004, 429, 642 https://doi.org/10.1038/nature02571
  14. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425 https://doi.org/10.1126/science.1069156
  15. Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2004, 22, 93 https://doi.org/10.1038/nbt920
  16. Yu, W. W.; Falkner, J. C.; Shih, S. S.; Colvin, V. L. Chem. Mater. 2004, 16, 3318 https://doi.org/10.1021/cm049476y
  17. Gokarna, A.; Jun, K. W.; Khanna, P. K.; Baeg, J. O.; Seok, S. I. Bull. Korean Chem. Soc. 2005, 26, 1803 https://doi.org/10.5012/bkcs.2005.26.11.1803
  18. Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. IBM J. Res. Dev. 2001, 45, 47 https://doi.org/10.1147/rd.451.0047
  19. Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D.; Meeldijk, J.; Hickey, S. G. J. Am. Chem. Soc. 2006, 128, 6792 https://doi.org/10.1021/ja061644v
  20. Khanna, P. K.; Jun, K. W.; Gokarna, A.; Baeg, J.-O.; Seok, S. I. Mater. Chem. Phys. 2006, 96, 154 https://doi.org/10.1016/j.matchemphys.2005.06.058
  21. Sashchiuk, A.; Langof, L.; Chaim, R.; Lifshitz, E. J. Cryst Growth 2002, 240, 431 https://doi.org/10.1016/S0022-0248(02)01156-9
  22. Baek, I. C.; Seok, S. I.; Pramanik, N. C.; Jana, S.; Lim, M. A.; Ahn, B. Y.; Lee, C. J.; Jeong, Y. J. J. Colloid Interf. Sci. 2007, 310, 163 https://doi.org/10.1016/j.jcis.2007.01.017
  23. Liu, H.; Owen, J. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2007, 129, 305 https://doi.org/10.1021/ja0656696

Cited by

  1. Synthesis of lead chalcogenide nanocrystals and study of charge transfer in blends of PbSe nanocrystals and poly(3-hexylthiophene) vol.14, pp.33, 2012, https://doi.org/10.1039/c2cp41584d
  2. Preparation and Characterization of a Triple Layered Au-PMMA-PbSe Hybrid Nanocomposite: Manipulation of PMMA Spacer Layer by Oxygen Plasma Etching vol.36, pp.8, 2015, https://doi.org/10.1002/bkcs.10379
  3. Hidden role of anion exchange reactions in nucleation of colloidal nanocrystals vol.18, pp.5, 2016, https://doi.org/10.1039/C5CE02114F
  4. Preparation and structural properties of PbSe nanomaterial vol.42, pp.6-7, 2010, https://doi.org/10.1002/sia.3464
  5. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review vol.9, pp.1, 2016, https://doi.org/10.1111/1751-7915.12297