DOI QR코드

DOI QR Code

Transport Properties of Lennard-Jones Mixtures: A Molecular Dynamics Simulation Study

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2008.03.20

Abstract

Equilibrium molecular dynamics simulations in a canonical ensemble are performed to evaluate the transport coefficients of several Lennard-Jones (LJ) mixtures at a liquid argon states of 94.4 K and 1 atm via modified Green-Kubo formulas. Two component mixture of A and B is built by considering the interaction between A and A as the attractive (A) potential, that between A and B as the attractive potential (A), and that between B and B as the repulsive potential (R), labelled as AAR mixture. Three more mixtures - ARA, ARR, and RAR are created in the same way. The behavior of the LJ energy and the transport properties for all the mixtures is easily understood in terms of the portion of attractive potential (A %). The behavior of the thermal conductivities by the translational energy transport due to molecular motion exactly coincides with that of diffusion constant while that of the thermal conductivities by the potential energy transport due to molecular motion is easily understood from the fact that the LJ energy of AAR, ARR, and RAR mixtures increases negatively with the increase of A % from that of the pure repulsive system while that of ARA changes rarely.

Keywords

References

  1. Gunton, J. D.; San Miguel, M.; Sahni, P. S. Phase Transitions and Critical Phenomena; Domb, C.; Lebowitz, J. L., Eds.; Academic: New York, 1983; Vol. 8
  2. Clarke, A. S.; Kapral, R.; Moore, B.; Patey, G.; Wu, X.-G. Phys. Rev. Lett. 1993, 70, 3283 https://doi.org/10.1103/PhysRevLett.70.3283
  3. Clarke, A. S.; Kapral, R.; Moore, B.; Patey, G.; Wu, X.-G. Reaction Dynamics in Clusters and in the Condensed Phase; Jortner, J., Levine, R., Pullman, B., Eds.; Kluwer: Dordrecht, 1994; p 89
  4. Garzon, I. L.; Long, X. P.; Kawai, R.; Weare, J. H. Europhys. Lett. 1989, 158, 525
  5. Ballone, P.; Andreoni, W.; Car, R.; Parrinello, M. Phys. Rev. Lett. 1989, 8, 73 https://doi.org/10.1103/PhysRevLett.8.73
  6. Rotenberg, A. J. Chem. Phys. 1965, 43, 4377 https://doi.org/10.1063/1.1696700
  7. Singer, J. V. L.; Singer, K. Molec. Phys. 1972, 24, 357 https://doi.org/10.1080/00268977200101511
  8. McDonald, I. R. Molec. Phys. 1972, 23, 41 https://doi.org/10.1080/00268977200100031
  9. Gardner, P. J.; Heyes, D. M.; Preston, S. R. Molec. Phys. 1991, 73, 141 https://doi.org/10.1080/00268979100101121
  10. Vogelsang, R.; Hoheisel, C.; Paolini, G. V.; Cicotti, G. Phys. Rev. A 1987, 36, 3964 https://doi.org/10.1103/PhysRevA.36.3964
  11. Hafskjol, B.; Ikeshoji, T.; Ratkje, S. K. Molec. Phys. 1993, 80, 1389 https://doi.org/10.1080/00268979300103101
  12. Ryckaert, J.-P.; Bellemans, A.; Cicotti, G.; Paolini, G. V. Phys. Rev. A 1989, 39, 259 https://doi.org/10.1103/PhysRevA.39.259
  13. Heyes, D. M. Phys. Rev. B 1988, 37, 5677 https://doi.org/10.1103/PhysRevB.37.5677
  14. Borgelt, P.; Hoheisel, C.; Stell, G. Phys. Rev. A 1990, 42, 789 https://doi.org/10.1103/PhysRevA.42.789
  15. Evans, D. J. Phys. Rev. A 1981, 23, 1988 https://doi.org/10.1103/PhysRevA.23.1988
  16. Evans, D. J. Phys. Rev. A 1986, 34, 1449 https://doi.org/10.1103/PhysRevA.34.1449
  17. Cummings, P. T.; Varner, T. L. J. Chem. Phys. 1988, 89, 6391 https://doi.org/10.1063/1.455407
  18. Weeks, J. D.; Chandler, D.; Anderson, H. C. J. Chem. Phys. 1971, 54, 5237 https://doi.org/10.1063/1.1674820
  19. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64
  20. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 81
  21. Lee, S. H. Bull. Kor. Chem. Soc. 2007, 28, 1371 https://doi.org/10.5012/bkcs.2007.28.8.1371
  22. Min, S. H.; Son, C. M.; Lee, S. H. Bull. Kor. Chem. Soc. 2007, 28, 1689 https://doi.org/10.5012/bkcs.2007.28.10.1689

Cited by

  1. -alkanes represented by rigid Lennard-Jones chains vol.114, pp.21, 2016, https://doi.org/10.1080/00268976.2016.1222456