DOI QR코드

DOI QR Code

Photoinduced Charge-Transfer Association of Tetracyanoquinodimethane with Aminobiphenyls

  • Published : 2008.05.20

Abstract

The molecular association of acceptors with electron donors is studied in the highly-polar solvent $CH_3CN$. Tetracyanoquinodimethane (TCNQ) forms a stable charge-transfer complex with donor molecules such as 4- aminobiphenyl (4-AB), benzidine (BD) and 2-aminobiphenyl (2-AB) with high association constants. The complexes of TCNQ with 4-AB or BD show new absorption bands at around 800 and 500 nm, which can be identified as reduced $TCNQ^{{\bullet}-}$ and $TCNQ^{2-}$ species, respectively. These bands grow quickly upon photoirradiation, implying that the charge-transfer complexes are easily formed in an excited state. Conversely, a small spectral manifestation of the charge transfer was observed in the case of 2-AB complex. It is demonstrated that the structural orientation between the geminate ion pairs could play an important role in building a stable complex.

Keywords

References

  1. Foster, R. Organic Charge Transfer Complexes; Academic Press: London, 1969
  2. Mulliken, R. S.; Person, W. B. Molecular Complexes; Wiley: New York, 1969
  3. Verhoeven, J. W. Pure Appl. Chem. 1990, 62, 1585 https://doi.org/10.1351/pac199062081585
  4. De Schryver, F. C.; Declercq, D.; Depaemelaere, S.; Hermans, E.; Onkelinx, A.; Verhoeven, J. W.; Gelan, J. J. Photochem. Photobiol. A; Chem. 1994, 82, 171 https://doi.org/10.1016/1010-6030(94)02001-9
  5. Schon, J. H.; Meng, H.; Bao, Z. Nature 2001, 413, 713 https://doi.org/10.1038/35099520
  6. Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.;Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571 https://doi.org/10.1126/science.1064354
  7. Metzger, R. M. Acc. Chem. Res. 1999, 32, 950 https://doi.org/10.1021/ar9900663
  8. Goes, M.; Verhoeven, J. W.; Hofstraat, H.; Brunner, K. Chem. Phys. Chem. 2003, 4, 349 https://doi.org/10.1002/cphc.200390061
  9. Wooster, T. T.; Watanabe, M.; Murray, R. W. J. Phys. Chem. 1992, 96, 5886 https://doi.org/10.1021/j100193a045
  10. Okamoto, K.; Ozeki, M.; Itaya, A.; Kusubayashi, S.; Mikawa, H. Bull. Chem. Soc. Jpn. 1975, 48, 1362 https://doi.org/10.1246/bcsj.48.1362
  11. Pearson, J. M. Pure Appl. Chem. 1977, 49, 463 https://doi.org/10.1351/pac197749040463
  12. Guillet, J. In Polymer Photophysics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules; Cambridge University Press: Cambridge, U.K. 1985
  13. Coleman, L. B.; Cohen, J. A.; Garito, A. F.; Heeger, A. J. Phys. Rew. B 1973, 7, 2122 https://doi.org/10.1103/PhysRevB.7.2122
  14. Ferraris, S. P.; Cowan, D.; Walalka, V.; Perlestein, J. H. J. Am. Chem. Soc. 1973, 95, 948 https://doi.org/10.1021/ja00784a066
  15. Kim, Y.-I.; Jeong, C.-K.; Lee, Y.-M.; Choi, S.-N. Bull. Korean Chem. Soc. 2002, 23, 1754 https://doi.org/10.5012/bkcs.2002.23.12.1754
  16. Sein Jr, L. T.; Wei, Y.; Jansen, S. A. Synthetic Metals 2000, 108, 101 https://doi.org/10.1016/S0379-6779(99)00163-0
  17. Egan, H. Environmental Carcinogens-Selected Methods of Analysis in Some Aromatic Amines and Azo dyes in the General and Industrial Environment; IARC: Lyon, 1981; Vol. 4
  18. Sentchouk, V. V.; Grintsevich, E. E. Biochemistry (Moscow) 2004, 69, 201 https://doi.org/10.1023/B:BIRY.0000018952.27498.58
  19. Kadlular, F. F.; Fu, P. P.; Jung, H.; Shaikh, A. U.; Beland, F. A. Environ. Health Perspect. 1990, 87, 233 https://doi.org/10.2307/3431030
  20. Lai, D. Y.; Woo, Y. T.; Argus, M. F.; Arco, J. C. In Designing Safer Chemicals: Green Chemistry for Pollution Prevention, ACS Symposium Series 640; DeVito, S. C., Garrett, R. L., Eds.; American Chemical Society: Washington, D.C. 1996; pp 62-73
  21. Chen, S.-C.; Kao, C.-M.; Huang, M.-H.; Shih, M.-K.; Chen, Y.-L.; Huang, S.-P.; Liu, T.-Z. Toxicological Science 2003, 72, 283 https://doi.org/10.1093/toxsci/kfg026
  22. Jonkman, H. T.; Kommandeur, J. Chem. Phys. Lett. 1972, 15, 496 https://doi.org/10.1016/0009-2614(72)80357-9
  23. Jeanmaire, D. L.; Van Duyne, R. P. J. Am. Chem. Soc. 1976, 98, 4029 https://doi.org/10.1021/ja00430a001
  24. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703 https://doi.org/10.1021/ja01176a030
  25. Rehm, D.; Weller, A. Isr. J. Chem. 1970, 259
  26. Rehm, D.; Weller, A. Ber. Bunsenges. Phys. Chem.1969, 73, 837
  27. Yamaguchi, S.; Potember, R. S. Synthetic Metals 1996, 78, 117 https://doi.org/10.1016/0379-6779(96)80111-1
  28. Wheland, R. C.; Gillson, J. L. J. Am. Chem. Soc. 1976, 98, 3916 https://doi.org/10.1021/ja00429a030

Cited by

  1. Postchemistry of Organic Particles: When TTF Microparticles Meet TCNQ Microstructures in Aqueous Solution vol.132, pp.20, 2010, https://doi.org/10.1021/ja102154b
  2. Electronically and Ionically Conductive Gels of Ionic Liquids and Charge-Transfer Tetrathiafulvalene–Tetracyanoquinodimethane vol.27, pp.17, 2011, https://doi.org/10.1021/la202465k
  3. Chemical Reaction Between Ag Nanoparticles and TCNQ Microparticles in Aqueous Solution vol.7, pp.9, 2011, https://doi.org/10.1002/smll.201001411
  4. Electronic and Vibrational Structure of Complexes of Tetracyanoquinodimethane with Cadmium Chalcogenide Quantum Dots vol.118, pp.31, 2014, https://doi.org/10.1021/jp505986c
  5. Synthesis and structure–property investigation of multi-arm oligothiophenes vol.5, pp.127, 2015, https://doi.org/10.1039/C5RA21089E
  6. Photorefractive Performance of Poly[methyl-3-(9-carbazolyl) propylsiloxane] Based Composites Sensitized with Poly(3-hexylthiophene) in a 0.2-1wt % Range vol.31, pp.1, 2008, https://doi.org/10.5012/bkcs.2010.31.01.041
  7. Micro/Nano Crystal Composed of Tetrathiafulvalene–Tetracyanoquinodimethane Prepared Using a Charge Transfer-Induced Reprecipitation Method vol.166, pp.9, 2008, https://doi.org/10.1149/2.0221909jes