References
- Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7, 64. https://doi.org/10.1039/b413546f
- Doble, M.; Kruthiventi, A. K. Green Chemistry & Engineering; Academic Press is an imprint of Elsevier: 2006; p 93.
- Prajapati, D.; Gohain, M. Tetrahedron 2004, 60(4), 815. https://doi.org/10.1016/j.tet.2003.10.075
- Chang, S. U.; Cho, J. H.; Lee, J. C. Bull. Korean Chem. Soc. 2008, 29, 27. https://doi.org/10.5012/bkcs.2008.29.1.027
- Tanaka, K. Solvent-free Organic Synthesis; Wiley-VCH: Weinheim, 2003.
- Chandrasekhar, S.; Narsihmulu, Ch.; Chandrashekar, G.; Shyamsunder, T. Tetrahedron Lett. 2004, 45, 2421. https://doi.org/10.1016/j.tetlet.2004.01.097
- Basaif, S. A.; Sobahi, T. R.; Khalil, A. K.; Hassan, M. A. Bull. Korean Chem. Soc. 2005, 26, 1677. https://doi.org/10.5012/bkcs.2005.26.11.1677
- Xu, B. L.; Chen, J. P.; Qiao, R. Z.; Fu, D. C. Chin. Chem. Lett. 2008, 19(5), 537.
- Santaniello, E.; Manzocchi, A.; Sozzani, P. Tetrahedron Lett. 1979, 47, 4581.
- Mehta, R. G.; Liu, J.; Constantinou, A.; Thomas, C. F.; Hawthorne, M.; You, M.; Gerhaeuser, C.; Pezzuto, J. M.; Moon, R. C.; Moriarty, R. M. Carcinogenesis 1995, 16, 399. https://doi.org/10.1093/carcin/16.2.399
- Metzer, J. B. In Comprehensive Heterocyclic Chemistry; Katritzky, A., Ed.; Pergamon: Oxford, 1984; Vol. 6, p 235.
- Buchel, K. H. Chemie der Pflanzen Schutz-Und Schadlingsbe Kampfungsmittle; Springer: Berlin Heidelberg, New York, 1970; p 457.
- Gerson, C.; Sabater, J.; Scuri, M.; Torbati, A.; Coffey, R.; Abraham, J. W.; Lauredo, I.; Forteza, R.; Wanner, A.; Salathe, M.; Abraham, W. M.; Conner, G. E. Am. J. Respir. Cell Mol. Biol. 2000, 22, 665. https://doi.org/10.1165/ajrcmb.22.6.3980
- Akio, M.; Masaaki, K. U. S. Patent 5,155,108; Chem. Abstr. 1991, 114, 102028e.
- Gorl, U.; Wolff, S. DE 4,100,217, 1992; Chem. Abstr. 1992, 117, 152581n.
- Batanero, B.; Braba, F.; Martina, A. J. Org. Chem. 2002, 67, 2369 https://doi.org/10.1021/jo016065h
- Vikharev, Y.; Shklyaev, Y.; Anikina, L.; Kolla, V.; Tolstikova, A. Pharm. Chem. J. 2005, 39, 405 https://doi.org/10.1007/s11094-005-0168-y
- Dittmer, D. C. Comprehensive Heterocyclic Chemistry; Katritzky, A., Ed.; Pergamon: Oxford, 1984; Vol. 7, p 178.
- Prakash, O.; Saini, N. Synth. Commun. 1993, 23, 1455. https://doi.org/10.1080/00397919308011236
- Brimeyer, M. O.; Mehrota, A.; Quici, S.; Nigam, A.; Regen, S. L. J. Org. Chem. 1980, 45, 4254. https://doi.org/10.1021/jo01309a047
- Kiasat, A. R.; Mehrjardi, M. F. Catal. Commun. 2008, 9, 1497 https://doi.org/10.1016/j.catcom.2007.12.019
- Kiasat, A. R.; Zayadi, M.; Mehrjardi, M. F. Chin. Chem. Lett. 2008, 19, 665 https://doi.org/10.1016/j.cclet.2008.04.004
- Das, B.; Reddy, V. S.; Krishnaiah, M. Tetrahedron Lett. 2006, 47, 8471. https://doi.org/10.1016/j.tetlet.2006.09.153
- Bacon, R. G. R.; Guy, R. G. J. Chem. Soc. 1961, 2447. https://doi.org/10.1039/jr9610002447
- Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N. Tetrahedron 2006, 62, 5498. https://doi.org/10.1016/j.tet.2006.03.030
Cited by
- β-Cyclodextrin based polyurethane as eco-friendly polymeric phase transfer catalyst in nucleophilic substitution reactions of benzyl halides in water: An efficient route to synthesis of benzyl thiocyanates and acetates vol.2, pp.5, 2012, https://doi.org/10.1039/c2cy00375a
- Synthesis, characterization and application of β-cyclodextrin-silica nanocomposite as potential microvessel in nucleophilic substitution reaction of phenacyl halides vol.77, pp.1-4, 2013, https://doi.org/10.1007/s10847-012-0263-0
- Bulky organosilicon compounds based on sulfanyltetrazoles: their synthesis and in vitro antibacterial evaluation vol.15, pp.6, 2018, https://doi.org/10.1007/s13738-018-1325-z
- Al(HSO4)3/silica gel as a novel catalytic system for the ring opening of epoxides with thiocyanate anion under solvent-free conditions vol.21, pp.2, 2010, https://doi.org/10.1016/j.cclet.2009.10.030
- 2-Chloro-1-methylpyridinium iodide, an efficient reagent for the conversion of alcohols into alkyl thiocyanates both under solvent and solvent-free conditions vol.53, pp.5, 2008, https://doi.org/10.1016/j.tetlet.2011.11.050
- Selectfluor™ F-TEDA-BF4 mediated thiocyanation or isothiocyanation of alcohols by in situ generation of [+SCN] under heterogeneous and neutral conditions vol.137, pp.None, 2008, https://doi.org/10.1016/j.jfluchem.2012.03.005
- Antimicrobial volatile glucosinolate autolysis products from Hornungia petraea (L.) Rchb. (Brassicaceae) vol.5, pp.2, 2008, https://doi.org/10.1016/j.phytol.2012.02.017
- A Simple, One-Pot and Phosphine-Free Procedure for Thiocyanation of Alcohols Using N-(p-toluenesulfonyl) Imidazole (TsIm) vol.40, pp.10, 2008, https://doi.org/10.3184/174751916x14736925997854
- Phosphorus pentasulfide mediated conversion of organic thiocyanates to thiols vol.13, pp.None, 2008, https://doi.org/10.3762/bjoc.13.117
- A green, catalyst-free synthesis of pyrazolopyranopyrimidines in polyethylene glycol as a biodegradable medium at ambient temperature vol.23, pp.3, 2008, https://doi.org/10.1007/s11030-018-9898-0
- An ionic liquid supported on magnetite nanoparticles as an efficient heterogeneous catalyst for the synthesis of alkyl thiocyanates in water vol.42, pp.3, 2008, https://doi.org/10.1080/17415993.2021.1885673
- Polyethylene Glycol (PEG-400): A Green Reaction Medium for One-Pot, Three Component Synthesis of 3-Substituted Indoles under Catalyst Free Conditions vol.41, pp.9, 2008, https://doi.org/10.1080/10406638.2019.1703764
- Integrated Study of the Thiocyanate Anion Electrooxidation by Electroanalytical and Computational Methods vol.168, pp.12, 2008, https://doi.org/10.1149/1945-7111/ac39d4