References
- Barrett, J., Brophy, P. M., and Hamilton, J. V. (2005), Analysing proteomic data. International Journal for Parasitology 35, 543 https://doi.org/10.1016/j.ijpara.2005.01.013
- Stults, J. T., Arnott, D., and Burlingame, A. L. (2005), Proteomics. In Methods in Enzymology. p245, Academic Press
- Mitsui, K., Doi, H., Nukina, N., and Indu Kheterpal and Ronald, W. (2006) Proteomics of Polyglutamine Aggregates. In Methods in Enzymology pp63-76, Academic Press
- Ota, S., Miyazaki, S., Matsuoka, H., Morisato, K., Shintani, Y., and Nakanishi, K. (2007), High-throughput protein digestion by trypsin-immobilized monolithic silica with pipette-tip formula. Journal of Biochemical and Biophysical Methods 70, 57-62 https://doi.org/10.1016/j.jbbm.2006.10.005
- Zhang, K., Wu, S., Tang, X., Kaiser, N. K., and Bruce, J. E. (2007), A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research. Journal of Chromatography B 849, 223-230 https://doi.org/10.1016/j.jchromb.2006.11.029
- Kong, X., Zhou, H., and Qian, H. (2007), Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chemistry 101, 615-620 https://doi.org/10.1016/j.foodchem.2006.01.057
- Ringseis, R., Matthes, B., Lehmann, V., Becker, K., Schops, R., Ulbrich-Hofmann, R., and Eder, K. (2005), Peptides and hydrolysates from casein and soy protein modulate the release of vasoactive substances from human aortic endothelial cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1721, 89-97 https://doi.org/10.1016/j.bbagen.2004.10.005
- Gibbs, B. F., Zougman, A., Masse, R., and Mulligan, C. (2004), Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International 37, 123-131 https://doi.org/10.1016/j.foodres.2003.09.010
- Kim, J., Lee, J., Na, H. B., Kim, B. C., Youn, J. K., Kwak, J. H., Moon, K., Lee, E., Kim, J., Park, J., Dohnalkova, A., Park, H. G., Gu, M. B., Chang, H. N., Grate, J. W., and Hyeon, T. (2005), A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small 1, 1203-1207 https://doi.org/10.1002/smll.200500245
- Lee, J., Kim, J., Kim, J., Jia, H. F., Kim, M. I., Kwak, J. H., Jin, S. M., Dohnalkova, A., Park, H. G., Chang, H. N., Wang, P., Grate, J. W., and Hyeon, T. (2005), Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. Small 1, 744-753
- Kim, B. C., Nair, S., Kim, J., Kwak, J. H., Grate, J. W., Kim, S. H., and Gu, M. B. (2005), Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 16, S382-S388 https://doi.org/10.1088/0957-4484/16/7/011
- Gupta, A. K. and Gupta, M. (2005), Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995-4021 https://doi.org/10.1016/j.biomaterials.2004.10.012
- Simonian, A. L., Good, T. A., Wang, S. S., and Wild, J. R. (2005), Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Analytica Chimica Acta 534, 69-77 https://doi.org/10.1016/j.aca.2004.06.056
- Kim, J. and Grate, J. W. (2003), Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Letters 3, 1219-1222 https://doi.org/10.1021/nl034404b