인체 양막의 골형성유도능 평가

Evaluation of Osteoinduction Efficacy of Human Amniotic Membrane

  • 한정욱 (중앙대학교 의과대학 병리학교실) ;
  • 서영권 (동국대학교 생명화학공학과) ;
  • 박정극 (동국대학교 생명화학공학과) ;
  • 송계용 (중앙대학교 의과대학 병리학교실)
  • Han, Jung-Wook (Department of Pathology, Chung-Ang University) ;
  • Seo, Young-Kwon (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jung-Keug (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Song, Kye-Yong (Department of Pathology, Chung-Ang University)
  • 발행 : 2008.08.29

초록

양막은 다양한 생체재료로 이용되어 왔으며 생체적합성과 환부의 치료효능이 우수한 것으로 알려져 있다. 본 연구에서는 양막을 갈아 양막스폰지를 제조하고 중간엽줄기세포를 배양한 뒤 누드마우스이식을 통하여 콜라젠스폰지와 비교하여 골형성유도능에 대한 연구를 실시하였다. 연구결과 세포의 부착과 증식면에서는 두 시료가 유사하였으나, 체내에 이식한 결과 양막스포지군에서 좀 더 많은 콜라젠 분비와 칼슘이 침착되었음을 확인하였다. 그리고 면역화학염색 결과 골형성 시 필요한 오스테오칼신과 오스테오넥틴이 좀 더 발현된 것을 관찰할 수 있었다. 따라서 양막은 골형성유도를 향상시킬 수 있는 가능성이 있음을 알 수 있었다.

Amniotic membrane (AM) has been used in various medical application such as biomaterials and it has a biocompatibility and wound healing effects. In this studies, we made AM sponge that was homogenized with AM and then lyophilized. And osteoinduction efficacy of AM sponge was evaluated with collagen sponge by mesenchymal stem cell culture and implantation in nude mouse. As a result of this study, adhesion and proliferation of MSC cells on AM sponge and collagen sponge were not different, but AM sponge was more superior to collagen sponge for induction of collagen secretion and calcium adhesion in matrix in vivo. Besides, AM sponges were more positive stained than collagen sponge about osteocalcin and osteonectin. As a results of this study, there is possibility of doing that AM could increase osteoinduction.

키워드

참고문헌

  1. Jasinkowski, N. L., and J. L. Cullum (1984), Human amniotic membrane as a wound dressing, AORN J. 39, 894-895 https://doi.org/10.1016/S0001-2092(07)64029-0
  2. Tyszkiewicz, J. T., I. A. Uhrynowska-Tyszkiewicz, A. Kaminski, and A. Dziedzic-Goclawska (1999), Amnion allografts prepared in the central tissue bank in warsaw, Ann. of Transplant. 4, 85-90
  3. Nakahara, T., T. Nakamura, E. Kobayashi, M. Inoue, K. Shigeno, Y. Tabata, K. Eto, and Y. Shimizu (2003), Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effect of controlled release of basic fibroblast growth factor from a sandwich membrane, Tissue Eng. 9, 153-162 https://doi.org/10.1089/107632703762687636
  4. Oest, M. E., K. M. Dupont, H. J. Kong, D. J. Mooney, and R. E. Guldberg (2007), Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects, J. Orthop. Res. 25, 941-950 https://doi.org/10.1002/jor.20372
  5. Lee, Y. M., S. H. Nam, Y. J. Seol, T. I. Kim, S. J. Lee, Y. Ku, I. C. Rhyu, C. P. Chung, S. B. Han, and S. M. Choi (2003), Enhance bone augumentation by controlled release of recombinebt human bone morphogenetic protein-2 from biodegradable membrane, J. Periodontal. 74, 865-872 https://doi.org/10.1902/jop.2003.74.6.865
  6. Ruhe, P. Q., H. C. Kroese-Deutman, J. G. C. Wolke, P. H. M. Spauwen, and J. A. Jansen (2004), Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits, Biomaterials 25, 2123-2132 https://doi.org/10.1016/j.biomaterials.2003.09.007
  7. Badylak, S. F., R. Tullius, K. Kokini, K. D. Shelbourne, T. Klootwyk, S. L. Voytik , M. R. Kraine, and C. Simmons (1995), The use of xenogenic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model, J. Biomed. Master. Res. 29, 977-985 https://doi.org/10.1002/jbm.820290809
  8. Dejardin, L. M., S. P. Arnoczky, B. J. Ewers, R. C. Haut, and R. B. Clarke (2001), Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs, Am. J. Sports Med. 29, 175-184 https://doi.org/10.1177/03635465010290021001
  9. Derwin, K., C. Androjna, E. Spencer, O. Safran, T. W. Bauer, T. Hunt, A. Caplan, and J. Iannotti (2004), Porcine small intestine submucosa as a flexor tendon graft, Clin. Orthop. 423, 245-252 https://doi.org/10.1097/01.blo.0000131235.91264.d7
  10. Ledet, E. H., A. L. Carl, D. J. DiRisio, M. P. Tymeson, L. B. Andersen, C. E. Sheehan, B. Kallakury, M. Slivka, and H. Serhan (2002), A pilot study to evaluate the effectiveness of small intestinal submucosa used to repair spinal ligaments in the goat, Spine J. 2, 188-196 https://doi.org/10.1016/S1529-9430(02)00182-1
  11. Musahl, V., S. D. Abramowitch, T. W. Gilbert, E. Tsuda, J. H. Wang, S. F. Badylak, and S. L. Woo (2004), The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament-a functional tissue engineering study in rabbits, J. Orthop. Res. 22, 214-220 https://doi.org/10.1016/S0736-0266(03)00163-3
  12. Sucknow, M. A., S. L. Voytik-Harbin, L. A. Terril, and S. F. Badylak (1999), Enhanced bone regeneration using porcine small intestinal submucosa, J. Invest. Surg. 12, 277-287 https://doi.org/10.1080/089419399272395
  13. Moore, D. C., H. A. Pedrozo, J. J. Crisco III, M. G. Ehrlich (2004), Preformed grafts of porcine small intestine submucosa (SIS) for bridging segmental bone defects, J Biomed Mater Res A. 69, 259-266
  14. Lee, S. J., L. W. Lee, Y. M. Lee, H. B. Lee, and G. Khang (2004), Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D,L-lactide-co-glycolide) for tissue-engineered bone, J. Biomater. Sci. Polym. Ed. 15, 1003-1017 https://doi.org/10.1163/1568562041526487
  15. Quinby, W. C., H. C. Hoover, M. Scheflan, P. T. Walters, S. A. Slavin, and C. C. Bondoc (1982), Clinical trials of amniotic membranes in burn wound care, Plast. Reconstr. Surg. 70, 711-717 https://doi.org/10.1097/00006534-198212000-00009
  16. Subrahmanyam, M. (1995), Amniotic membrane as a cover for microskin grafts, Br. J. Plast. Surg. 48, 477-478 https://doi.org/10.1016/0007-1226(95)90123-X
  17. Honavar, S. G., A. K. Bansal, V. S. Sangwan, and G. N. Rao (2000), Amniotic membrane transplantation for ocular surface reconstruction in Stevens-Johnson Syndrome, Ophthalmology 107, 975-979 https://doi.org/10.1016/S0161-6420(00)00026-9
  18. Kim, J. S., J. C. Kim, B. K. Na, J. M. Jeong, and C. Y. Song (2000), Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkari burn, Exp. Eye Res. 70, 329-337 https://doi.org/10.1006/exer.1999.0794
  19. Ward, D. J., J. P. Bennett, H. Burgos, and J. Fabre (1989), The healing of chronic venous leg ulcers with prepared human amnion, Br. J. Plast. Surg. 42, 463-467 https://doi.org/10.1016/0007-1226(89)90015-5
  20. Koizumi, N., T. Inatomi, A. J. Quantock, N. J. Fullwood, A. Dota, and S. Kinoshita (2000), Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits, Cornea 19, 65-71 https://doi.org/10.1097/00003226-200001000-00013
  21. Koizumi, N., N. J. Fullwood, G. Bairaktaris, T. Inatomi, S. Kinoshita, and A. J. Quantock (2000), Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane, IOVS. 41, 2506-2513
  22. Koizumi, N., T. Inatomi, T. Suzuki, C. Sotozono, and S. Kinoshita (2001), Cultivated corneal epithelial stem cell transplantation in ocular surface disorders, Ophthalmology 108, 1569-1574 https://doi.org/10.1016/S0161-6420(01)00694-7
  23. Koizumi, N., L. J. Cooper, N. J. Fullwood, T. Nakamura, K. Inoki, M. Tsuzuki, and S. Kinoshita (2002), An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture, IOVS. 43, 2114-2121
  24. Tsai, R. J., L. M. Li, and J. K. Chen (2000), Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells, N. Engl. J. Med. 343, 86-93 https://doi.org/10.1056/NEJM200007133430202
  25. Mohammad, J., J. Shenaq, and S. Shenaq (2000), Modulation of peripheral nerve regeneration : A tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap, Plast. Reconstr. Surg. 105, 660-666 https://doi.org/10.1097/00006534-200002000-00027
  26. Nakamura, T., K. Endo, L. J. Cooper, N. J. Fullwood, N. Tanifuji, M. Tsuzuki, N. Koizumi, T. Inatomi, Y. Sano, and S. Kinoshita (2003), The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane, IOVS. 44, 106-116 https://doi.org/10.1167/iovs.02-0195
  27. Ti S. E., D. Anderson, A. Touhami, C. Kim, and S. C. Tseng (2002), Factors affecting outcome following transplantation of ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits, IOVS. 43, 2584-2592
  28. Lindberg, K., M. E. Brown, H. V. Chaves, K. R. Kenyon, and J. G. Rheinwald (1993), In vitro propagation of human ocular surface epithelial cells for transplantation, IOVS. 34, 2672-2679
  29. Ueta, M., M. N. Kweon, Y. Sano, C. Sotozono, J. Yamada, N. Koizumi, H. Kiyono, and S. Kinoshita (2002), Immunosuppressive properties of human amniotic memebrane for mixed lymphocyte reaction, Clin. Exp. Immunol. 129, 464-470 https://doi.org/10.1046/j.1365-2249.2002.01945.x
  30. Seo, Y. K., J. I. Ahn, D. H. Lee, S. Y. Kwon, D. H. Jung, Y. S. Park, K. Y. Song, E. K. Yang, Y. J. Kim, and J. K. Park (2004), The wound healing effects of human deepithelialized amniotic membrane with keratinocyte, Tissue Eng. and Regen. Med. 1, 178-183