References
- Achcar, J. A., Dey, D. K. and Niverthi, M. (1997). A Bayesian approach using nonhomogeneous Poisson process for software reliability models, In Frontiers in Reliability, A.P. Basu, S. K. Basu and S. Mukhopadhyay,(Eds.), 1-18, World Scientific Publishing: Singapore
- Basu, S. and Ebrahimi, N. (2003). Bayesian software reliability models based on Martingale processes, Technometrics, 45, 150-158 https://doi.org/10.1198/004017003188618788
- Cox, D. R. and Lewis, P. A. (1966). Statistical Analysis of Series of Events, Chapman & Hall/CRC, London
- Diaconis, P. and Ylvisaker, D. (1985). Quantifying prior opinion, In Bayesian Statistics 2, J. M. Bernado, M. H. DeGroot, D. V. Lindley and A. F. M. Smith,(Eds.), 133-156, Amsterdam: North Holland
- Duane, J. T. (1964). Learning curve approach to reliability monitoring, IEEE Transactions on Aerospace, AS-2, 563-566
- Gelfand, A. E. and Mallick, B. K. (1995). Bayesian analysis of proportional hazards models built from monotone functions, Biometrics, 51, 843-852 https://doi.org/10.2307/2532986
- Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-472 https://doi.org/10.1214/ss/1177011136
- Goel, A. L. (1983). A Guide Book for Software reliability Assessment, Technical Report, Rome air Development Center, Rome, New York
- Goel, A. L. and Okumoto, K. (1979). Time-dependent error detection rate model for software reliability and other performance measures, IEEE Transactions on Reliability, 28, 206-211 https://doi.org/10.1109/TR.1979.5220566
- Jelinski, Z. and Moranda, P. B. (1972). Software reliability research, In Statistical Computer Performance Evaluation, Freiburger, W. (Eds.), Academic Press, New York, 465-497
- Kim, D. K., Yeo, I. K. and Park, D. H. (2006). Nonhomogeneous Poisson processes based on Beta-mixtures in software reliability models, Advanced Reliability Modeling II - Reliability Testing and Improvement, 403-410
- Kuo, L. and Yang, T. Y. (1995). Bayesian computation of software reliability, Journal of Computational and Graphical Statistics, 4, 65-82 https://doi.org/10.2307/1390628
- Kuo, L. and Yang, T. Y. (1996). Bayesian computation for nonhomogeneous Poisson processes in software reliability, Journal of the American Statistical Association, 91, 763-772 https://doi.org/10.2307/2291671
- Littlewood, B. and Verall, J. L. (1973). A Bayesian reliability growth model for computer science, Applied Statistics, 22, 332-346 https://doi.org/10.2307/2346781
- Mallick, B. K. and Gelfand, A. E. (1994). Generalized linear models with unknown link functions, Biometrika, 81, 237-245 https://doi.org/10.1093/biomet/81.2.237
- Mazzuchi, T. A. and Soyer, R. (1988). A Bayes empirical-Bayes model for software reliability, IEEE Transactions on Reliability, 37, 248-254 https://doi.org/10.1109/24.3749
- Musa, J. D. and Okumoto, K. (1984). A logarithmic Poisson execution time model for software reliability measurement, In Proceedings of the Seventh nternational conference on software engineering, 230-238
- Ohba, M., Yamada, S., Takeda, K. and Osaki, S. (1982). S-shaped software reliability growth curve: How good is it?, COMPSAC '82, 38-44
- Singpurwalla, N. D. and Soyer, R. (1985). Assessing (software) reliability growth using a random coefficient autoregressive process and its ramifications, IEEE Transactions on Software Engineering, 11, 1456- 1464 https://doi.org/10.1109/TSE.1985.231889
- Tohma, Y., Yamano, H., Obha, M. and Jacoby, R. (1991). The estimation of parameters of the hypergeometric distribution and its application to the software reliability growth model, IEEE Transactions on Software Engineering, 17, 483-489 https://doi.org/10.1109/32.90450