Isolation and Characterization of PERV-C env from Domestic Pig in Korea

  • Park, Sung-Han (Department of Microbiology and Institute of Basic Science, Dankook University) ;
  • Bae, Eun-Hye (Department of Microbiology and Institute of Basic Science, Dankook University) ;
  • Park, Sang-Min (Department of Microbiology and Institute of Basic Science, Dankook University) ;
  • Park, Jin-Woo (Department of Microbiology and Institute of Basic Science, Dankook University) ;
  • Lim, Mi-Suk (Department of Microbiology and Institute of Basic Science, Dankook University) ;
  • Jung, Yong-Tae (Department of Microbiology and Institute of Basic Science, Dankook University)
  • Published : 2008.10.31

Abstract

Clone PERV-C (A3) env was isolated from the genomic DNA of domestic pig (Sus scrofa domesticus) in Korea to investigate the molecular properties of PERV-C. The nucleic acid homologies between the PERV-MSL (type C) reference and the PERV-C(A3) clone was 99% for env, but a single base pair deletion was found in the transmembrane (TM) region of the env open reading frame. To examine the functional characteristics of truncated PERV-C env, we constructed a replication-incompetent retroviral vector by replacing the env gene of the pCL-Eco retrovirus vector with PERV-C env. A retroviral vector bearing PERV-C/A chimeric envelopes was also created to complement the TM defect. Our results indicated that truncated PERV-C env was not infectious in human cells as expected. Interestingly, however, the vector with the PERV-C/A envelope was able to infect 293 cells. This observation suggests that recombination within PERV-C TM could render PERV-C infectious in humans. To further characterize PERV-C/A envelopes, we constructed an infectious molecular clone by using a PCR-based technique. This infectious molecular clone will be useful to examine more specific regions that are critical for human cell tropism.

Keywords

References

  1. Aguilar, H. C., W. F. Anderson, and P. M. Cannon. 2003. Cytoplasmic tail of Moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: Implication for mechanism of action of the R peptide. J. Virol. 77: 1281-1291 https://doi.org/10.1128/JVI.77.2.1281-1291.2003
  2. Akiyoshi, D. E., M. Denaro, H. Zhu, J. L. Greenstein, P. Banerjee, and J. A. Fishman. 1998. Identification of a fulllength cDNA for an endogenous retrovirus of miniature swine. J. Virol. 72: 4503-4507
  3. Bach, F. H., J. A. Fishman, N. Daniels, J. Proimos, B. Anderson, C. B. Carpenter, L. Forrow, S. C. Robson, and H. V. Fineberg. 1998. Uncertainty in xenotransplantation: Individual benefit versus collective risk. Nat. Med. 4: 141-144 https://doi.org/10.1038/nm0298-141
  4. Bartosch, B., R. A. Weiss, and Y. Takeuchi. 2002. PCR-based cloning and immunocytological titration of infectious porcine endogenous retrovirus subgroup A and B. J. Gen. Virol. 83: 2231-2240 https://doi.org/10.1099/0022-1317-83-9-2231
  5. Bobkova, M., J. Stitz, M. Engelstadter, K. Cichutek, and C. J. Buchholz. 2002. Identification of R-peptides in envelope proteins of C-type retroviruses. J. Gen. Virol. 83: 2241-2246 https://doi.org/10.1099/0022-1317-83-9-2241
  6. Chapman, L. E., T. M. Folks, D. R. Salomon, A. P. Pattersom, T. E. Eggerman, and P. D. Noguchi. 1995. Xenotransplantation and xenogeneic infections. N. Engl. J. Med. 333: 1498-1501 https://doi.org/10.1056/NEJM199511303332211
  7. Chiang, C. Y., Y. R. Pan, L. F. Chou, C. Y. Fang, S. R. Wang, C. Y. Yang, and H. Y. Chang. 2007. Functional epitopes on porcine endogenous retrovirus envelope protein interacting with neutralizing antibody combining sites. Virology 10: 361: 364-371 https://doi.org/10.1016/j.virol.2006.11.016
  8. Ericsson, T. A., Y. Takeuchi, C. Templin, G. Quinn, S. F. Farhadian, J. C. Wood, B. A. Oldmixon, K. M. Suling, J. K. Ishii, Y. Kitagawa, T. Miyazawa, D. R. Salomon, R. A. Weiss, and C. Patience. 2003. Identification of receptors for pig endogenous retrovirus. Proc. Natl. Acad. Sci. USA 100: 6759-6764
  9. Fishman, J. A. 1998. Infection and xenotransplantation. Developing strategies to minimize risk. Ann. N. Y. Acad. Sci. 862: 52-66 https://doi.org/10.1111/j.1749-6632.1998.tb09117.x
  10. Gemeniano, M., O. Mpanju, D. R. Salomon, M. V. Eiden, and C. A. Wilson. 2006. The infectivity and host range of the ecotropic porcine endogenous retrovirus, PERV-C, is modulated by residues in the C-terminal region of its surface envelope protein. Virology 346: 108-117 https://doi.org/10.1016/j.virol.2005.10.021
  11. Harrison, I., Y. Takeuchi, B. Bartosch, and J. P. Stoye. 2004. Determinants of high titer in recombinant porcine endogenous retroviruses. J. Virol. 78: 13871-13879 https://doi.org/10.1128/JVI.78.24.13871-13879.2004
  12. Jung, Y., T. Wu, and C. A. Kozak. 2004. Novel host range and cytopathic variant of ecotropic friend murine leukemia virus. J. Virol. 78: 12189-12197 https://doi.org/10.1128/JVI.78.22.12189-12197.2004
  13. Kim, E., H. R. Poo, M. H. Sung, and C. J. Kim. 2005. Mature HIV-like particles produced from single semliki forest virus-derived expression vector. J. Microbiol. Biotechnol. 15: 1229-1239
  14. Le Tissier, P., J. P. Stoye, Y. Takeuchi, C. Patience, and R. A. Weiss. 1997. Two sets of human-tropic pig retrovirus. Nature 389: 681-682 https://doi.org/10.1038/39489
  15. Patience, C., Y. Takeuchi, and R. A. Weiss. 1997. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3: 282-286 https://doi.org/10.1038/nm0397-282
  16. Preuss, T., N. Fischer, K. Boller, and R. R. Tonjes. 2006. Isolation and characterization of an infectious replication-competent molecular clone of ecotropic porcine endogenous retrovirus class C. J. Virol. 80: 10258-10261 https://doi.org/10.1128/JVI.01140-06
  17. Pyra, H., J. Böni, and J. Schüpbach. 1994. Ultrasensitive retrovirus detection by a reverse transcriptase assay based on product enhancement. Proc. Natl. Acad. Sci. USA 51: 1544-1548
  18. Sahs, D. H., M. Sykes, S. C. Robson, and D. K. Cooper. 2001. Xenotransplantation. Adv. Immunol. 79: 129-223 https://doi.org/10.1016/S0065-2776(01)79004-9
  19. Song, M. S., Y. H. Joo, E. H. Lee, J. Y. Shin, C. J. Kim, K. S. Shin, M. H. Sung, and Y. K. Choi. 2006. Genetic characterization of encephalomyocarditis virus isolated from aborted swine fetus in Korea. J. Microbiol. Biotechnol. 16: 1570-1576
  20. Specke, V., S. J. Tacke, K. Boller, J. Schwendemann, and J. Denner. 2001. Porcine endogenous retroviruses: In vitro host range and attempts to establish small animal models. J. Gen. Virol. 82: 837-844 https://doi.org/10.1099/0022-1317-82-4-837
  21. Takeuchi, Y., C. Patience, S. Magre, R. A. Weiss, P. T. Banerjee, P. Le Tissier, and J. P. Stoye. 1998. Host range and interference studies of three classes of pig endogenous retrovirus. J. Virol. 72: 9986-9991
  22. Todaro, G. J., R. E. Benveniste, M. M. Lieber, and C. J. Sherr. 1974. Characterization of a type C virus released from the porcine cell line PK(15). Virology 58: 65-74 https://doi.org/10.1016/0042-6822(74)90141-X
  23. Wilson, C. A., S. Wong, M. Vanbrocklin, and M. J. Federspiel. 2000. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J. Virol. 74: 49-56 https://doi.org/10.1128/JVI.74.1.49-56.2000
  24. Wilson, C. A., S. Wong, J. Muller, C. E. Davidson, T. M. Rose, and P. Burd. 1998. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J. Virol. 72: 3082-3087