Isolation and Structure Determination of a Proteasome Inhibitory Metabolite from a Culture of Scytonema hofmanni

  • Shim, Sang-Hee (School of Biotechnology, Yeungnam University) ;
  • Chlipala, George (Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago) ;
  • Orjala, Jimmy (Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago)
  • Published : 2008.10.31

Abstract

Cyanobacteria, blue-green algae, are a rich source of bioactive secondary metabolites with many potential applications. The ubiquitin-proteasome proteolytic system plays an important role in selective protein degradation and regulates cellular events including apoptosis. Cancer cells are more sensitive to the proapoptotic effects of proteasome inhibition than normal cells. Thus, proteasome inhibitors can be potential anticancer agents. Cyanobacteria have been shown to be a rich source of highly effective inhibitors of proteases. A proteasome inhibitor was screened from an extract of the culture of Scytonema hofmanni on the basis of its inhibitory activity, which led to the isolation of nostodione A with an $IC_{50}$ value of 50${\mu}M$. Its structure was determined by spectroscopic methods such as $^{1}H$-NMR and ESI-MS spectral analyses.

Keywords

References

  1. Adams, J. 2004. The proteasome: A suitable antineoplastic target. Nat. Rev. 4: 349-460 https://doi.org/10.1038/nrm1100
  2. Agrawal, M. K., S. K. Ghosh, D. Bagchi, J. Weckesser, M. Erhard, and S. N. Bagchi. 2006. Occurrence of microcystin-containing toxic water blooms in central India. J. Microbiol. Biotechnol. 16: 212-218
  3. Beasly, V. R., R. A. Lovell, K. R. Holmes, H. E. Walcott, D. J. Schaeffer, W. E. Hoffmann, and W. W. Carmichael. 2000. Microcystin-LR decreases hepatic and renal perfusion, and causes circulatory shock, severe hypoglycemia, and terminal hyperkalemia in intravascularly dosed swine. J. Toxicol. Environ. Health 61: 281-303 https://doi.org/10.1080/00984100050136599
  4. Bonjouklian, R., T. A. Smitka, A. H. Hunt, J. L. Occolowitz, T. J. Perun, L. Doolin, et al. 1996. A90720A, a serine protease inhibitor isolated from a terrestrial blue-green alga Microchaete loktakensis. Tetrahedron 52: 385-404
  5. Clardy, J. and C. Walsh. 2004. Lessons from natural molecules. Nature 432: 829-837 https://doi.org/10.1038/nature03194
  6. Davidson, B. S. 1995. New dimensions in natural products research: Cultured marine organisms. Curr. Opin. Biotechnol. 6: 284-291 https://doi.org/10.1016/0958-1669(95)80049-2
  7. Gerwick, W., L. T. Tan, and N. Sitachitta. 2001. Nitrogencontaining metabolites from marine cyanobacteria, pp. 75-184. In G. A. Cordell (ed.), The Alkaloids, Vol. 57. Academic Press, San Diego
  8. Grach-Pogrebinsky, O., B. Sedmak, and S. Carmeli. 2003. Proteasome inhibitors from a Solvenian lake bled toxic waterbloom of the cyanobacterium Planktothrix rubescens. Tetrahedron 59: 1243-1245
  9. Humpage, A. R., S. J. Hardy, E. Moore, S. M. Froscio, and I. R. Falconer. 2000. Microcystins (cyanobacterial toxins) in drinking water enhance the growth of aberrant crypt foci in the mouse colon. J. Toxicol. Environ. Health 61: 155-165 https://doi.org/10.1080/00984100050131305
  10. Kim, D. W., S. G. Kang, I. S. Kim, B. K. Lee, Y. T. Rho, and K. J. Lee. 2006. Proteases and protease inhibitors produced in streptomycetes and their roles in morphological differentiation. J. Microbiol. Biotechnol. 16: 5-14
  11. Kim, J. D. and C. G. Lee. 2006. Differential responses of two freshwater cyanobacteria, Anabaena variabilis and Nostoc commune, to sulfonylurea herbicide bensulfuron-methyl. J. Microbiol. Biotechnol. 16: 52-56
  12. Kim, J. D. and C. G. Lee. 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their differential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotechnol. 16: 240-246
  13. Kim, J. D. and C. G. Lee. 2007. Purification and characterization of extracellular ${\beta}-glucosidase$ from Sinorhizobium kostiense AFK-13 and its algal lytic effect on Anabaena flos-aquae. J. Microbiol. Biotechnol. 17: 745-752
  14. Kobayashi, A., S. Kajiyama, K. Inawaka, H. Kanzaki, and K. Kawazu. 1994. Nostodione A, a novel mitotic spindle poison from a blue-green alga Nostoc commune. J. Biosci. 49c: 464-470
  15. Kodani, S., S. Suzuki, K. Ishida, and M. Murakami. 1999. Five new cyanobacterial peptides from waterbloom materials of Lake Teganuma (Japan). FEMS Microbiol. Lett. 178: 343-348 https://doi.org/10.1111/j.1574-6968.1999.tb08697.x
  16. Lebuhn, M. and A. Hartmann. 1993. Method for the determination of indole-3-acetic acid and related compounds of L-tryptophan catabolism in soils. J. Chromatogr. 629: 255-266 https://doi.org/10.1016/0021-9673(93)87039-O
  17. Luesch, H., W. Y. Yoshida, R. E. Moore, V. J. Paul, and T. H. Corbett. 2001. Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscule. J. Am. Chem. Soc. 123: 5418-5423 https://doi.org/10.1021/ja010453j
  18. Luesch, H., W. Y. Yoshida, R. E. Moore, and V. J. Paul. 2000. New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorg. Med. Chem. 10: 1973-1978 https://doi.org/10.1016/S0968-0896(02)00014-7
  19. Mason, C. P., K. R. Edwards, R. E. Carlson, J. Pignatello, F. K. Gleason, and J. M. Wood. 1982. Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science 215: 400-402 https://doi.org/10.1126/science.6800032
  20. Matern, U., L. Obeer, M. Erhard, M. Herdman, and J. Weckesser. 2003. Hofmannolin, a cyclopeptolin from Scytonema hofmanni PCC 7110. Phytochemistry 64: 1061-1067 https://doi.org/10.1016/S0031-9422(03)00467-9
  21. Matern, U., L. Obeer, R. A. Falchetto, M. Erhard, W. A. Konig, M. Herdman, and J. Weckesser. 2001. Scyptolin A and B, cyclic depsipeptides from axenic cultures of Scytonema hofmanni PCC 7110. Phytochemistry 58: 1087-1095 https://doi.org/10.1016/S0031-9422(01)00400-9
  22. Mundt, S., A. Nowontny, R. Mentel, A. Lesnau, and U. Lindequist. 1997. Antiviral activity of cyanobacterium Microcystis aeruginosa SPH 01. Pharm. Pharmacol. Lett. 7: 161-163
  23. Myung, J., K. B. Kim, and G. M. Crews. 2001. The ubiquitin-proteasome pathway and proteasome inhibitors. Med. Res. Rev. 21: 245-273 https://doi.org/10.1002/med.1009
  24. Namikoshi, M. and K. L. Rinehardt. 1996. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. Biotechnol. 17: 373-384 https://doi.org/10.1007/BF01574768
  25. Orjala, J., D. G. Nagle, V. L. Hsu, and W. H. Gerwick. 1995. Antillatoxin: An exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscule. J. Am. Chem. Soc. 117: 8281-8282 https://doi.org/10.1021/ja00136a031
  26. Paramore, A. and S. Frantz. 2003. Fresh from the pipeline: Bortezomib. Nat. Rev. 2: 611-612 https://doi.org/10.1038/nrd1159
  27. Pignatello, J. J., J. Porwoll, R. E. Carlson, A. Xavier, and F. K. Gleason. 1983. Structure of the antibiotic cyanobacterin, a chlorine-containing ${\gamma}-lactone$ from the freshwater cyanobacterium Scytonema hofmanni. J. Org. Chem. 48: 4035-4038 https://doi.org/10.1021/jo00170a032
  28. Proteau, P. J., W. H. Gerwick, F. Garcia-Pichel, and R. Castenholz. 1993. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825-829 https://doi.org/10.1007/BF01923559
  29. Radau, G. 2000. Serine protease inhibiting cyanopeptides. Pharmazie 55: 555-560
  30. Richardson, P. G., T. Hideshima, and K. Anderson. 2003. Bortezomib (PS-341): A novel, first in class proteasome inhibitor for the treatment on multiple myeloma and other cancers. Cancer Control 10: 361-369 https://doi.org/10.1177/107327480301000502
  31. Toivola, D. M., J. E. Eriksson, and D. L. Brautigan. 1994. Identification of protein phosphatase 2A as the primary target for microcystin-LR in rat liver homogenates. FEBS Lett. 344: 175-180 https://doi.org/10.1016/0014-5793(94)00382-3
  32. Trimurtulu, G., I. Ohtani, G. M. L. Patterson, R. E. Moore, T. H. Corbett, F. A. Valeriote, and L. Demchik. 1994. Total structures of cryptophycins, potent antitumor depsipeptides from the bluegreen alga Nostoc sp. strain GSV 224. J. Am. Chem. Soc. 116: 4729-4737 https://doi.org/10.1021/ja00090a020
  33. Wu, M., T. Okino, L. M. Nogle, B. L. Marquez, R. T. Williamson, N. Sitachitta, et al. 2000. Structure, synthesis, and biological properties of kalkitoxin, a novel neurotoxin from the marine cyanobacterium Lyngbya majuscule. J. Am. Chem. Soc. 122: 12041-12042 https://doi.org/10.1021/ja005526y
  34. Zhang, L.-H., R. E. Longley, and F. E. Koehn. 1997. Antiproliferative and immunosuppressive properties of microcolin A, a marine-derived lipopeptide. Life Sci. 60: 751-762 https://doi.org/10.1016/S0024-3205(96)00645-5