Genetic Characterization of Two Putative Toxin-Antitoxin Systems on Cryptic Plasm ids from Bacillus thuringiensis Strain YBT-1520

  • Liu, Xiaojin (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhu, Shufang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Ye, Weixing (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Ruan, Lifang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Yu, Ziniu (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhao, Changming (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Sun, Ming (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
  • Published : 2008.10.31

Abstract

A novel putative toxin-antitoxin segregational stability system named KyAB system was identified in a novel native plasmid pBMB8240 from Bacillus thuringiensis strain YBT-1520, based on sequences homology with other toxin-antitoxin systems, the lethal activity of the KyB putative toxin in Escherichia coli and the stabilizing effect of the kyAB system in Bacillus thuringiensis. Secondarily, the native plasmid pBMB9741 from the same strain was resequenced and the corrected plasmid was named as pBMB7635. Based on sequence homology with the tasAB system and the lethal activity of toxin protein in Escherichia coli, a tasAB-like putative toxin-antitoxin system was identified on pBMB7635.

Keywords

References

  1. Anantharaman, V. and L. Aravind. 2003. New connections in the prokaryotic toxin-antitoxin network: Relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol. 4: R81 https://doi.org/10.1186/gb-2003-4-12-r81
  2. Andrup, L., G. B. Jensen, A. Wilcks, L. Smidt, L. Hoflack, and J. Mahillon. 2003. The patchwork nature of rolling-circle plasmids: Comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 49: 205-232 https://doi.org/10.1016/S0147-619X(03)00015-5
  3. Baum, J. A. 1994. Tn5401, a new class II transposable element from Bacillus thuringiensis. J. Bacteriol. 176: 2835-2845 https://doi.org/10.1128/jb.176.10.2835-2845.1994
  4. Choi, J. Y., M. S. Li, H. J. Shim, J. Y. Roh, S. D. Woo, B. R. Jin, K. S. Boo, and Y. H. Je. 2007. Isolation and characterization of strain of Bacillus thuringiensis subsp. kenyae containing two novel cry1-type toxin genes. J. Microbiol. Biotechnol. 17: 1498-1503
  5. Dziewit, L., M. Jazurek, L. Drewniak, J. Baj, and D. Bartosik. 2007. The SXT conjugative element and linear prophage N15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the Paracoccus aminophilus plasmid pAMI2. J. Bacteriol. 189: 1983-1997 https://doi.org/10.1128/JB.01610-06
  6. Fico, S. and J. Mahillon. 2006. TasA-tasB, a new putative toxinantitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system. BMC Genomics 7: 259 https://doi.org/10.1186/1471-2164-7-259
  7. Gerdes, K., S. K. Christensen, and A. Lobner-Olesen. 2005. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3: 371-382 https://doi.org/10.1038/nrmicro1147
  8. Grady, R. and F. Hayes. 2003. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol. Microbiol. 47: 1419-1432 https://doi.org/10.1046/j.1365-2958.2003.03387.x
  9. Guerout-Fleury, A. M., K. Shazand, N. Frandsen, and P. Stragier. 1995. Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167: 335-336 https://doi.org/10.1016/0378-1119(95)00652-4
  10. Hayes, F. 2003. Toxins-antitoxins: Plasmid maintenance programmed cell death and cell cycle arrest. Science 301: 1496-1499 https://doi.org/10.1126/science.1088157
  11. Li, L., C. Yang, Z. Liu, F. Li, and Z. Yu. 2000. Screening of acrystalliferous mutants from Bacillus thuringiensis and their transformation properties. Wei Sheng Wu Xue Bao 40: 85-90. (In Chinese.)
  12. Li, M. S., J. Y. Choi, J. Y. Roh, H. J. Shim, J. N. Kang, Y. S. Kim, et al. 2007. Identification and molecular characterization of novel cry1-type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J. Microbiol. Biotechnol. 17: 15-20
  13. Mahillon, J., F. Hespel, A. M. Pierssens, and J. Delcour. 1988. Cloning and partial characterization of three small cryptic plasmids from Bacillus thuringiensis. Plasmid 19: 169-173 https://doi.org/10.1016/0147-619X(88)90056-X
  14. Oberer, M., K. Zangger, S. Prytulla, and W. Keller. 2002. The antitoxin ParD of plasmid RK2 consists of two structurally distinct moieties and belongs to the ribbon-helix-helix family of DNA-binding proteins. Biochem. J. 361: 41-47 https://doi.org/10.1042/0264-6021:3610041
  15. Ogata, H., P. Renesto, S. Audic, C. Robert, G. Blanc, P. E. Fournier, H. Parinello, J. M. Claverie, and D. Raoult. 2005. The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS. Biol. 3: e248 https://doi.org/10.1371/journal.pbio.0030248
  16. Pandey, D. P. and K. Gerdes. 2005. Toxin-antitoxin quality control loci are highly abundant in free-living but lost from hostassociated prokaryotes. Nucleic Acids Res. 33: 966-976 https://doi.org/10.1093/nar/gki201
  17. Raumann, B. E., M. A. Rould, C. O. Pabo, and R. T. Sauer. 1994. DNA recognition by ${\beta}-sheets$ in the Arc repressor-operator crystal structure. Nature 367: 754-757 https://doi.org/10.1038/367754a0
  18. Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559
  19. Sanchis, V., H. Agaisse, J. Chaufaux, and D. Lereclus. 1997. A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl. Environ. Microbiol. 63: 779-784
  20. Sun, M., Z. Liu, and Z. Yu. 2000. Characterization of the insecticidal crystal protein genes of Bacillus thuringiensis YBT-1520. Wei Sheng Wu Xue Bao 40: 365-371. (In Chinese.)
  21. Wilcks, A., L. Smidt, O. A. Okstad, A. B. Kolsto, J. Mahillon, and L. Andrup. 1999. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuringiensis. J. Bacteriol. 181: 3193-3200
  22. Zhang, Q., M. Sun, Z. Xu, and Z. Yu. 2007. Cloning and characterization of pBMB9741, a native plasmid of Bacillus thuringiensis subsp. kurstaki strain YBT-1520. Curr. Microbiol. 55: 302-307 https://doi.org/10.1007/s00284-006-0623-3