Red to Red - the Marine Bacterium Hahella chejuensis and its Product Prodigiosin for Mitigation of Harmful Algal Blooms

  • Kim, Doc-Kyu (Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI) ;
  • Kim, Ji-Hyun F. (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yim, Joung-Han (Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI) ;
  • Kwon, Soon-Kyeong (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Choong-Hwan (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Hong-Kum (Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI)
  • Published : 2008.10.31

Abstract

Harmful algal blooms (HABs), commonly called red tides, are caused by some toxic phytoplanktons, and have made massive economic losses as well as marine environmental disturbances. As an effective and environment-friendly strategy to control HAB outbreaks, biological methods using marine bacteria capable of killing the harmful algae or algicidal extracellular compounds from them have been given attention. A new member of the $\gamma$-Proteobacteria, Hahella chejuensis KCTC 2396, was originally isolated from the Korean seashore for its ability to secrete industrially useful polysaccharides, and was characterized to produce a red pigment. This pigment later was identified as an alkaloid compound, prodigiosin. During the past several decades, prodigiosin has been extensively studied for its medical potential as immunosuppressants and antitumor agents, owing to its antibiotic and cytotoxic activities. The lytic activity of this marvelous molecule against Cochlodinium polykrikoides cells at very low concentrations ($\sim$l ppb) was serendipitously detected, making H. chejuensis a strong candidate among the biological agents for HAB control. This review provides a brief overview of algicidal marine bacteria and their products, and describes in detail the algicidal characteristics, biosynthetic process, and genetic regulation of prodigiosin as a model among the compounds active against red-tide organisms from the biochemical and genetic viewpoints.

Keywords

References

  1. Alam, Z. B., M. Otaki, H. Furumai, and S. Ohgaki. 2001. Direct and indirect inactivation of Microcystis aeruginosa by UV-radiation. Water Res. 35: 1008-1014 https://doi.org/10.1016/S0043-1354(00)00357-2
  2. Amaro, A. M., M. S. Fuentes, S. R. Ogalde, J. A. Venegas, and B. A. Suarez-Isla. 2005. Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J. Eukaryot. Microbiol. 52: 191-200 https://doi.org/10.1111/j.1550-7408.2005.00031.x
  3. Baker, K. H. and D. S. Herson. 1978. Interactions between the diatom Thallasiosira pseudonanna and an associated pseudomonad in a mariculture system. Appl. Environ. Microbiol. 35: 791-796
  4. Cerdeno, A. M., M. J. Bibb, and G. L. Challis. 2001. Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): New mechanisms for chain initiation and termination in modular multienzymes. Chem. Biol. 8: 817-829 https://doi.org/10.1016/S1074-5521(01)00054-0
  5. Cho, J.-C. and S. J. Giovannoni. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70: 432-440 https://doi.org/10.1128/AEM.70.1.432-440.2004
  6. Cho, L. K. N., J. A. Lowe, R. B. Maguire, and J. C. Tsang. 1987. Relationship of prodigiosin condensing enzyme activity to the biosynthesis of prodigiosin and its precursors in Serratia marcescens. Experientia 43: 397-399 https://doi.org/10.1007/BF01940425
  7. D'Alessio, R., A. Bargiotti, O. Carlini, F. Colotta, M. Ferrari, P. Gnocchi, et al. 2000. Synthesis and immunosuppressive activity of novel prodigiosin derivatives. J. Med. Chem. 43: 2557-2565 https://doi.org/10.1021/jm001003p
  8. Dembitsky, V. M., T. Rezanka, J. Spiìzek, and L. O. Hanus. 2005. Secondary metabolites of slime molds (myxomycetes). Phytochemistry 66: 747-769 https://doi.org/10.1016/j.phytochem.2005.02.017
  9. Doucette, G. J., E. R. McGovern, and J. A. Babinchak. 1999. Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization of killing activity. J. Phycol. 35: 1447-1454 https://doi.org/10.1046/j.1529-8817.1999.3561447.x
  10. Effler, S. W., S. Litten, and S. D. Field. 1980. Whole lake responses to low level copper sulfate treatment. Water Res. 14: 1489-1499 https://doi.org/10.1016/0043-1354(80)90015-9
  11. Fineran, P. C., H. Slater, L. Everson, K. Hughes, and G. P. C. Salmond. 2005. Biosynthesis of tripyrrole and ${\beta}-lactam$ secondary metabolites in Serratia: Integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol. Microbiol. 56: 1495-1517 https://doi.org/10.1111/j.1365-2958.2005.04660.x
  12. Frazier, A. D., J. M. Rowe, C. A. Rentz, C. J. Gobler, and S. W. Wilhelm. 2007. Bacterial lysis of Aureococcus anophagefferens CCMP 1784 (Pelagophyceae). J. Phycol. 43: 461-465 https://doi.org/10.1111/j.1529-8817.2007.00353.x
  13. Fukami, K., T. Nishijima, and Y. Ishida. 1997. Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 358: 185-191 https://doi.org/10.1023/A:1003139402315
  14. Fukami, K., A. Yuzawa, T. Nishijima, and Y. Hata. 1992. Isolation and properties of a bacterium ihibiting the growth of Gymnodinium nagasakiense. Nippon Suisan Gakkaishi 58: 1073-1077 https://doi.org/10.2331/suisan.58.1073
  15. Furstner, A. 2003. Chemistry and biology of roseophilin and the prodigiosin alkaloids: A survey of the last 2500 years. Angew. Chem. Int. Ed. Engl. 42: 3582-3603 https://doi.org/10.1002/anie.200300582
  16. Furstner, A. and E. J. Grabowski. 2001. Studies on DNA cleavage by cytotoxic pyrrole alkaloids reveal the distinctly different behavior of roseophilin and prodigiosin derivatives. ChemBioChem 2: 706-709 https://doi.org/10.1002/1439-7633(20010903)2:9<706::AID-CBIC706>3.0.CO;2-J
  17. Furstner, A., J. Grabowski, and C. W. Lehmann. 1999. Total synthesis and structural refinement of the cyclic tripyrrole pigment nonylprodigiosin. J. Org. Chem. 64: 8275-8280 https://doi.org/10.1021/jo991021i
  18. Furusawa, G., T. Yoshikawa, A. Yasuda, and T. Sakata. 2003. Algicidal activity and gliding motility of Saprospira sp. SS98-5. Can. J. Microbiol. 49: 92-100 https://doi.org/10.1139/w03-017
  19. Garneau-Tsodikova, S., P. C. Dorrestein, N. L. Kelleher, and C. T. Walsh. 2006. Protein assembly line components in prodigiosin biosynthesis: Characterization of PigA, G, H, I, J. J. Am. Chem. Soc. 128: 12600-12601 https://doi.org/10.1021/ja063611l
  20. Gerber, N. N. 1975. Prodigiosin-like pigments. CRC Crit. Rev. Microbiol. 3: 469-485 https://doi.org/10.3109/10408417509108758
  21. Han, S. B., H. M. Kim, Y. H. Kim, C. W. Lee, E.-S. Jang, K. H. Son, S. U. Kim, and Y. K. Kim. 1998. T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens. Int. J. Immunopharmacol. 20: 1-13 https://doi.org/10.1016/S0192-0561(97)00062-3
  22. Hare, C. E., E. Demir, K. J. Coyne, S. Craig Cary, D. L. Kirchman, and D. A. Hutchins. 2005. A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae 5: 363-373 https://doi.org/10.1016/j.hal.2005.07.008
  23. Harris, A. K. P., N. R. Williamson, H. Slater, A. Cox, S. Abbasi, I. Foulds, H. T. Simonsen, F. J. Leeper, and G. P. C. Salmond. 2004. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and straindependent genome context variation. Microbiology 150: 3547- 3560 https://doi.org/10.1099/mic.0.27222-0
  24. Holmstrom, C. and S. Kjelleberg. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30: 285-293 https://doi.org/10.1111/j.1574-6941.1999.tb00656.x
  25. Imai, I., D. Fujimaru, T. Nishigaki, M. Kurosaki, and H. Sugita. 2006. Algicidal bacteria isolated from the surface of seaweeds from the coast of Osaka Bay in the Seto Inland Sea, Japan. Afr. J. Mar. Sci. 28: 319-323 https://doi.org/10.2989/18142320609504170
  26. Imai, I., Y. Ishida, and Y. Hata. 1993. Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar. Biol. 116: 527-532 https://doi.org/10.1007/BF00355470
  27. Imai, I., Y. Ishida, K. Sakaguchi, and Y. Hata. 1995. Algicidal marine bacteria isolated from northern Hiroshima Bay, Japan. Fish. Sci. 61: 628-636 https://doi.org/10.2331/fishsci.61.628
  28. Imai, I., M.-C. Kim, K. Nagasaki, S. Itakura, and Y. Ishida. 1998. Relationships between dynamics of red tide-causing raphidophycean flagellates and algicidal microorganisms in the coastal sea of Japan. Phycol. Res. 46: 139-146 https://doi.org/10.1111/j.1440-1835.1998.tb00106.x
  29. Imai, I., T. Sunahara, T. Nishikawa, Y. Hori, R. Kondo, and S. Hiroishi. 2001. Fluctuations of the red tide flagellates Chattonella spp. (Raphidophyceae) and the algicidal bacterium Cytophaga sp. in the Seto Inland Sea, Japan. Mar. Biol. 138: 1043- 1049 https://doi.org/10.1007/s002270000513
  30. Iwata, Y., I. Sugahara, T. Kimura, H. Kowa, A. Matsumoto, and K. Noritake. 2004. Properties of an algicidal bacterium (Flavobacterium sp.) against Karenia mikimotoi isolated from Ise Bay, Japan. Nippon Suisan Gakkaishi 70: 537-541 https://doi.org/10.2331/suisan.70.537
  31. Jeong, H., J. H. Yim, C. Lee, S.-H. Choi, Y. K. Park, S. H. Yoon, et al. 2005. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res. 33: 7066-7073 https://doi.org/10.1093/nar/gki1016
  32. Jeong, S.-Y., K. Ishida, Y. Ito, S. Okada, and M. Murakami. 2003. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedr. Lett. 44: 8005-8007 https://doi.org/10.1016/j.tetlet.2003.08.115
  33. Jin, E., C.-G. Lee, and J. E. W. Polle. 2006. Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): Biosynthesis, regulation, and biotechnology. J. Microbiol. Biotechnol. 16: 821-831
  34. Khodaiyan, F., S. H. Razavi, Z. Emam-Djomeh, S. M. Mousavi, and M. A. Hejazi. 2007. Effect of culture conditions on canthaxanthin production by Dietzia natronolimnaea HS-1. J. Microbiol. Biotechnol. 17: 195-201
  35. Kim, C.-J., H.-G. Kim, C.-H. Kim, and H.-M. Oh. 2007. Life cycle of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides in Korean coastal waters. Harmful Algae 6: 104-111 https://doi.org/10.1016/j.hal.2006.07.004
  36. Kim, D., J. S. Lee, Y. K. Park, J. F. Kim, H. Jeong, T.-K. Oh, B. S. Kim, and C. H. Lee. 2007. Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J. Appl. Microbiol. 102: 937-944
  37. Kim, D., Y. K. Park, J. S. Lee, J. F. Kim, H. Jeong, B. S. Kim, and C. H. Lee. 2006. Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium Hahella chejuensis KCTC 2396. J. Microbiol. Biotechnol. 16: 1912-1918
  38. Kim, J.-D., W.-S. Lee, B. Kim, and C.-G. Lee. 2006. Proteomic analysis of protein expression patterns associated with astaxanthin accumulation by green alga Haematococcus pluvialis (Chlorophyceae) under high light stress. J. Microbiol. Biotechnol. 16: 1222-1228
  39. Kim, M.-C., I. Yoshinaga, I. Imai, K. Nagasaki, S. Itakura, and Y. Ishida. 1998. A close relationship between algicidal bacteria and termination of Heterosigma akashiwo (Raphidophyceae) blooms in Hiroshima Bay, Japan. Mar. Ecol. Prog. Ser. 170: 25-32 https://doi.org/10.3354/meps170025
  40. Kitaguchi, H., N. Hiragushi, A. Mitsutani, M. Yamaguchi, and Y. Ishida. 2001. Isolation of an algicidal marine bacterium with activity against the harmful dinoflagellate Heterocapsa circularisquama (Dinophyceae). Phycologia 40: 275-279 https://doi.org/10.2216/i0031-8884-40-3-275.1
  41. Kondo, R., I. Imai, K. Fukami, A. Minami, and S. Hiroishi. 1999. Phylogenetic analysis of algicidal bacteria (family Flavobacteriaceae) and selective detection by PCR using a specific primer set. Fish. Sci. 65: 432-435 https://doi.org/10.2331/fishsci.65.432
  42. Kwon, S. 2008. Identification of factors affecting prodigiosin biosynthesis in Hahella chejuensis. M.S. Thesis, Univertisy of Science and Technology, Korea
  43. Lee, H. K., J. Chun, E. Y. Moon, S.-H. Ko, D.-S. Lee, H. S. Lee, and K. S. Bae. 2001. Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. Int. J. Syst. Evol. Microbiol. 51: 661-666 https://doi.org/10.1099/00207713-51-2-661
  44. Lee, S.-O., J. Kato, N. Takiguchi, A. Kuroda, T. Ikeda, A. Mitsutani, and H. Ohtake. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66: 4334-4339 https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  45. Lewis, S. M. and W. A. Corpe. 1964. Prodigiosin-producing bacteria from marine sources. Appl. Microbiol. 12: 13-17
  46. Lovejoy, C., J. P. Bowman, and G. M. Hallegraeff. 1998. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 64: 2806-2813
  47. Manage, P. M., Z. Kawabata, and S.-I. Nakano. 2000. Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat. Microb. Ecol. 22: 111-117 https://doi.org/10.3354/ame022111
  48. Mayali, X. and F. Azam. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51: 139- 144 https://doi.org/10.1111/j.1550-7408.2004.tb00538.x
  49. Mayali, X. and G. J. Doucette. 2001. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1: 277-293 https://doi.org/10.1016/S1568-9883(02)00032-X
  50. Mo, S., B. S. Kim, and K. A. Reynolds. 2005. Production of branched-chain alkylprodiginines in S. coelicolor by replacement of the 3-ketoacyl ACP synthase III initiation enzyme, RedP. Chem. Biol. 12: 191-200 https://doi.org/10.1016/j.chembiol.2004.11.006
  51. Nagasaki, K., M. Yamaguchi, and I. Imai. 2000. Algicidal activity of a killer bacterium against the harmful red tide dinoflagellate Heterocapsa circularisquama isolated from Ago Bay, Japan. Nippon Suisan Gakkaishi 66: 666-673 https://doi.org/10.2331/suisan.66.666
  52. Nagayama, K., T. Shibata, K. Fujimoto, T. Honjo, and T. Nakamura. 2003. Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 218: 601-611 https://doi.org/10.1016/S0044-8486(02)00255-7
  53. Nakashima, T., D. Kim, Y. Miyazaki, K. Yamaguchi, S. Takeshita, and T. Oda. 2006. Mode of action of an antialgal agent produced by a marine gammaProteobacterium against Chattonella marina. Aquat. Microb. Ecol. 45: 255-262 https://doi.org/10.3354/ame045255
  54. Nakashima, T., Y. Miyazaki, Y. Matsuyama, W. Muraoka, K. Yamaguchi, and T. Oda. 2006. Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium ${\gamma}-Proteobacterium$. Appl. Microbiol. Biotechnol. 73: 684-690 https://doi.org/10.1007/s00253-006-0507-2
  55. Perez-Tomas, R., B. Montaner, E. Llagostera, and V. Soto-Cerrato. 2003. The prodigiosins, proapoptotic drugs with anticancer properties. Biochem. Pharmacol. 66: 1447-1452 https://doi.org/10.1016/S0006-2952(03)00496-9
  56. Salomon, P. S., S. Janson, and E. Graneli. 2003. Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful Algae 2: 261-272 https://doi.org/10.1016/S1568-9883(03)00045-3
  57. Sawabe, T., H. Makino, M. Tatsumi, K. Nakano, K. Tajima, M. M. Iqbal, I. Yumoto, Y. Ezura, and R. Christen. 1998. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int. J. Syst. Bacteriol. 48: 769-774 https://doi.org/10.1099/00207713-48-3-769
  58. Sengco, M. R. and D. M. Anderson. 2004. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51: 169-172 https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
  59. Sheeler, N. L., S. V. MacMillan, and J. R. Nodwell. 2005. Biochemical activities of the absA two-component system of Streptomyces coelicolor. J. Bacteriol. 187: 687-696 https://doi.org/10.1128/JB.187.2.687-696.2005
  60. Shieh, W. Y., Y.-W. Chen, S.-M. Chaw, and H.-H. Chiu. 2003. Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int. J. Syst. Evol. Microbiol. 53: 479-484 https://doi.org/10.1099/ijs.0.02307-0
  61. Skerratt, J. H., J. P. Bowman, G. Hallegraeff, S. James, and P. D. Nichols. 2002. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar. Ecol. Prog. Ser. 244: 1-15 https://doi.org/10.3354/meps244001
  62. Sohn, J. H., J.-H. Lee, H. Yi, J. Chun, K. S. Bae, T.-Y. Ahn, and S.-J. Kim. 2004. Kordia algicida gen. nov., sp. nov., an algicidal bacterium isolated from red tide. Int. J. Syst. Evol. Microbiol. 54: 675-680 https://doi.org/10.1099/ijs.0.02689-0
  63. Su, J. Q., X. R. Yang, T. L. Zheng, Y. Tian, N. Z. Jiao, L. Z. Cai, and H. S. Hong. 2007. Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6: 799-810 https://doi.org/10.1016/j.hal.2007.04.004
  64. Takamatsu, S., T. W. Hodges, I. Rajbhandari, W. H. Gerwick, M. T. Hamann, and D. G. Nagle. 2003. Marine natural products as novel antioxidant prototypes. J. Nat. Prod. 66: 605-608 https://doi.org/10.1021/np0204038
  65. Van Hullebusch, E., V. Deluchat, P. M. Chazal, and M. Baudu. 2002. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part II. Case of copper sulfate. Environ. Pollut. 120: 627-634 https://doi.org/10.1016/S0269-7491(02)00191-4
  66. Wang, X., L. Gong, S. Liang, X. Han, C. Zhu, and Y. Li. 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4: 433-443 https://doi.org/10.1016/j.hal.2004.06.001
  67. Wasserman, H. H., G. C. Rodgers, and D. D. Keith. 1969. Metacycloprodigiosin, a tripyrrole pigment from Streptomyces longisporus ruber. J. Am. Chem. Soc. 91: 1263-1264 https://doi.org/10.1021/ja01033a065
  68. Williamson, N. R., P. C. Fineran, F. J. Leeper, and G. P. C. Salmond. 2006. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 4: 887-899 https://doi.org/10.1038/nrmicro1531
  69. Williamson, N. R., H. T. Simonsen, R. A. A. Ahmed, G. Goldet, H. Slater, L. Woodley, F. J. Leeper, and G. P. C. Salmond. 2005. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: Identification of a novel 2-methyl-3-n-amyl-pyrroie (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol. 56: 971-989 https://doi.org/10.1111/j.1365-2958.2005.04602.x
  70. Yi, H., Y.-H. Chang, H. W. Oh, K. S. Bae, and J. Chun. 2003. Zooshikella ganghwensis gen. nov., sp. nov., isolated from tidal flat sediments. Int. J. Syst. Evol. Microbiol. 53: 1013-1018 https://doi.org/10.1099/ijs.0.02521-0
  71. Yoshinaga, I., T. Kawai, and Y. Ishida. 1997. Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref., Japan. Fish. Sci. 63: 94-98 https://doi.org/10.2331/fishsci.63.94
  72. Yoshinaga, I., M.-C. Kim, N. Katanozaka, I. Imai, A. Uchida, and Y. Ishida. 1998. Population structure of algicidal marine bacteria targeting the red tide forming alga Heterosigma akashiwo (Raphidophyceae), determined by restriction fragment length polymorphism analysis of the bacterial 16S ribosomal RNA genes. Mar. Ecol. Prog. Ser. 170: 33-44 https://doi.org/10.3354/meps170033