Construction and Expression Analysis of Knock-in Vector for EGFP Expression in the Porcine $\beta$-Casein Gene Locus

돼지 $\beta$-Casein을 이용한 EGFP 발현 Knock-in 벡터의 구축 및 발현 검증

  • Lee, Sang-Mi (Department of Animal Science and Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University) ;
  • Kim, Hey-Min (Department of Animal Science and Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University) ;
  • Moon, Seung-Ju (Department of Animal Science and Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University) ;
  • Kang, Man-Jong (Department of Animal Science and Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University)
  • 이상미 (전남대학교 농업생명과학대학 농업과학기술연구소 동물자원학부) ;
  • 김혜민 (전남대학교 농업생명과학대학 농업과학기술연구소 동물자원학부) ;
  • 문승주 (전남대학교 농업생명과학대학 농업과학기술연구소 동물자원학부) ;
  • 강만종 (전남대학교 농업생명과학대학 농업과학기술연구소 동물자원학부)
  • Published : 2008.09.30

Abstract

This study was carried out to develop knock-in vector for EGFP (enhanced green fluorescent protein) expression in porcine $\beta$-casein locus. For construction of knock-in vector using porcine $\beta$-casein gene, we cloned the $\beta$-casein genome DNA from porcine fetal fibroblast cells, EGFP and SV40 polyA signal using PCR. The knock-in vectors consisted of a 5-kb fragment as the 5' recombination arm and a 2.7-kb fragment as the 3' recombination arm. We used the neomycin resistance gene ($neo^{r}$) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. To demonstrate EGFP expression from knock-in vector, we are transfected knock-in vector that has EGFP gene in murine mammary epithelial cell line HC11 cells with pSV2 neo plasmid. The EGFP expression was detected in HC11 cells transfected knock-in vector. This result demonstrates that this knock-in vector may be used for the development of knock-in transgenic pig.

본 연구는 돼지 $\beta$-casein 유전자 위치에서 EGFP가 발현될 수 있는 knock-in 벡터를 구축하기 위하여 실시되었다. 돼지의 $\beta$-casein 유전자를 이용하여 knock-in 벡터를 구축하기 위해 돼지의 태아 섬유아세포로부터 $\beta$-casein 유전자를 동정하였고 EGFP, SV4O polyA signal을 동정하였다. Knock-in 벡터는 5' 상동 영역 약 5 kb와 3' 상동 영역 약 2.7 kb로 구성되어있으며, positive selection marker로 $neo^{r}$ 유전자를, negative selection marker로 DT-A 유전자를 사용하였다. 구축된 knock-in 벡터로부터 EGFP의 발현을 확인하기 위하여 생쥐 유선 세포인 HC11 세포에 knock-in 벡터를 도입하였다. 그 결과 EGFP의 발현을 HC11 세포에서 확인하였다. 이와 같은 결과로서 이 block-in 벡터는 knock-in 형질전환 돼지를 생산하는데 사용될 수 있을 것으로 생각된다.

Keywords

References

  1. Brophy B, Smolenski G, Wheeler T, Wells D, L' Huillier P, Laible G (2003): Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21:157-162 https://doi.org/10.1038/nbt783
  2. Chan AW (1999): Transgenic animals: current and alternative strategies. Cloning 1:25-46 https://doi.org/10.1089/15204559950020076
  3. Clark AJ, Burl S, Denning C, Dickinson P (2000): Gene targeting in livestock: a preview. Transgenic Res 9:263-275 https://doi.org/10.1023/A:1008974616402
  4. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002): Targeted disruption of the alpha 1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251-255 https://doi.org/10.1038/nbt0302-251
  5. Hamanaka H, Katoh-Fukui Y, Suzuki K, Kobayashi M, Suzuki R, Motegi Y, Nakahara Y, Takeshita A, Kawai M, Ishiguro K, Yokoyama M, Fujita SC (20- 00): Altered cholesterol metabolism in human apolipoprotein E4 knock-in mice. Hum Mol Genet 9: 353-361 https://doi.org/10.1093/hmg/9.3.353
  6. Houdebine LM (2000): Transgenic animal bioreactors. Transgenic Res 9:305-320 https://doi.org/10.1023/A:1008934912555
  7. Houdebine LM, Attal J, Vilotte JL (2002): Vector design for transgene expression. In: Pinkert CA. Transgenic Animal Technology. 2nd ed. Academic press, California, USA, pp 420-458
  8. Kauf AC, Kensinger RS (2002): Purification of porcine beta-casein, N-terminal sequence, quantification inmastitic milk. J Anim Sci 80:1863-1870 https://doi.org/10.2527/2002.8071863x
  9. Ko JH, Lee CS, Kim KH, Pang MG, Koo JS, Fang N, Koo DB, Oh KB, Youn WS, ZhengGD, Park JS, Kim SJ, Han YM, Choi IY, Lim J, Shin ST, Jin SW, Lee KK, Yoo OJ (2000): Production of biologically active human granulocyte colony stimulating factor in the milk of transgenic goat. Transgenic Res 9:215-222 https://doi.org/10.1023/A:1008972010351
  10. Kumar S, Clarke AR, Hooper ML, Horne DS, Law AJ, Leaver J, Springbett A, Stevenson E, Simons JP (1994): Milk composition and lactation of beta-casein- deficient mice. Proc Natl Acad Sci USA 91: 6138-6142
  11. Li L, Shen W, Pan QY, Min LJ, Sun YJ, Fang YW, Deng JX, Pan QJ (2006): Nuclear transfer of goat somatic cells transgenic for human lactoferrin. Yi Chuan 28:1513-1519 https://doi.org/10.1360/yc-006-1513
  12. Richa J, Lo CW (1989): Introduction of human DNA into mouse eggs by injection of dissected chromosomefragments. Science 245:175-177 https://doi.org/10.1126/science.2749254
  13. Rodriguez A, Castro FO, Aguilar A, Ramos B, Del Barco DG, Lleonart R, De laFuente J (1995): Expression of active human erythropoietin in the mammary gland of lactatingtransgenic mice and rabbits. Biol Res 28:141-153
  14. Shen W, Min LJ, Li L, Pan QJ, Wu XJ, Zhou YR, Deng JX (2005): High-efficient gene targeting of goat mammary epithelium cell by themulti-selection mechanism. Yi Chuan Xue Bao 32:366-371
  15. Shen W, Lan G, Yang X, Li L, Min L, Yang Z, Tian L, Wu X, Sun Y, Chen H, Tan J, Deng J, Pan Q (2007): Targeting the exogenous htPAm gene on goat somatic cell beta-casein locus fortransgenic goat production. Mol Reprod Dev 74:428-434 https://doi.org/10.1002/mrd.20595
  16. Thomas KR, Capecchi MR (1987): Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503-512 https://doi.org/10.1016/0092-8674(87)90646-5
  17. Van Cott KE, Butler SP, Russell CG, Subramanian A, Lubon H, Gwazdauskas FC, Knight J, Drohan WN, Velander WH (1999): Transgenic pigs as bioreactors: a comparison of gamma-carboxylation of glutamicacid in recombinant human protein C and factor IX by the mammary gland. Genet Anal 15: 155-160 https://doi.org/10.1016/S1050-3862(99)00020-0
  18. Wang B, Zhou J (2003): Specific genetic modifications of domestic animals by gene targeting and animal cloning. Reprod Biol Endocrinol 1:103 https://doi.org/10.1186/1477-7827-1-103
  19. Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G (2000): Transgenic technology in farm animals-progress and perspectives. Exp Physiol 85:615-625 https://doi.org/10.1017/S0958067000021102
  20. Yanagawa Y, Kobayashi T, Ohnishi M, Kobayashi T, Tamura S, Tsuzuki T, Sanbo M,Yagi T, Tashiro F, Miyazaki J (1999): Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgenic Res 8:215-221 https://doi.org/10.1023/A:1008914020843
  21. Yu HQ, Li ZG, Liu HR, Wu GX, Cheng GX (2004): Expression of goat beta-casein gene targeting vector in mammary gland cell. Sheng Wu Gong, Cheng Xue Bao 20:21-24