DOI QR코드

DOI QR Code

Long-Range Surface Plasmon-Polariton Wavelength Filter based on Asymmetric Double-Electrode Structure

비대칭 이중-금속 장거리 표면-플라즈몬 도파로를 이용한 파장필터

  • Published : 2008.12.31

Abstract

We propose a wavelength filter based on long-range surface plasmon-polaritons (LR-SPP) supported by a asymmetric doubleelectrode LR-SPP structure. For the case of the asymmetric double-layered LR-SPP waveguide, LR-SPPs exist with a much broader range of index mismatches between core and clad materials. Thus, the asymmetric double-electrode LR-SPP waveguide is adequate to form a plasmonic band-gap device as we report in this paper by studying Bragg-reflection wavelength filter based on it. The structure for wavelength filter operating telecommunications wavelength is designed by using the method of line (MoL) and the transfer matrix method. The fabricated device shows a relatively high extinction ratio of 50 dB with a bandwidth of 2 nm, and the performance is very consistent with numerical simulations.

비대칭 이중-금속 장거리 표면-플라즈몬 구조는 두 금속 사이에 위치한 코어 유전체 층의 굴절률을 임의로 선택하여도 장거리 표면-플라즈몬 모드가 존재한다는 장점이 있다. 도파로의 코어 층에 격자를 형성함으로써 플라즈몬 밴드-갭에 기초한 통신대역 파장에서의 장거리 표면-플라즈몬 파장필터를 구현하였다. Method of Line과 전달행렬방법 등을 통해 장거리 표면-플라즈몬 모드의 유효굴절률, 모드 특성, 투과도 등의 분석을 통해 설계하였으며, 도파로의 코어 층에 홀로그램 리소 방식을 이용하여 523.3 nm 주기의 브래그격자를 형성하여 파장필터를 제작하여 통신대역인 1541 nm 파장에서 대략 2 nm의 반치폭과 50 dB 이상의 파장 소광률을 확인하였다. 본 연구에서 제안한 파장필터는 표면-플라즈몬 집적회로를 구성하는 소자로써 중요한 역할을 할 것이다.

Keywords

References

  1. H. Raether, “Surface Plasmon: on smooth and rough surfaces and on gratings,” (Springer-Verlag, London, UK, 1998)
  2. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev., vol. 182, no. 2, pp. 539-554, 1969 https://doi.org/10.1103/PhysRev.182.539
  3. F. A. Burton and S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmonplaritons,” J. Lightwave Tech., vol. 8, no. 12, pp. 1843-1849, 1990 https://doi.org/10.1109/50.62881
  4. T. Sterkenburgh and H. Franke, “Observastion of a long range surface mode with a polymer/silver/polymer multilayer,” J. Appl. Phys., vol. 81, pp. 1011-1013, 1997 https://doi.org/10.1063/1.364228
  5. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width,” Opt. Lett., vol. 24, no. 15, pp. 1011-1013, 1999 https://doi.org/10.1364/OL.24.001011
  6. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozehevolnyi, “Polymer-based surface plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett., vol. 82, no. 5, pp. 668-670, 2003 https://doi.org/10.1063/1.1542944
  7. T. Nikolajsen, K. Leosson, and S. I. Bozehevolnyi, “Surface plasmon-polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett., vol. 85, no. 24, pp. 5833-5836, 2004 https://doi.org/10.1063/1.1835997
  8. J. Yoon, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface,” J. Appl. Phys., vol. 94, no. 1, pp. 123-129, 2003 https://doi.org/10.1063/1.1577396
  9. Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett., vol. 92, no. 16, pp. 161103-1-161103-3, 2008 https://doi.org/10.1063/1.2913015
  10. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg Gratings for Long-Range Surface Plasmon Polaritons,” J. Lightwave Tech., vol. 24, no. 2, pp. 912-918, 2006 https://doi.org/10.1109/JLT.2005.862470
  11. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment,” IEEE J. Quantum Electron., vol. 41, no. 12, pp. 1480-1491, 2005 https://doi.org/10.1109/JQE.2005.858466
  12. G. I. Stegeman and J. J. Bruke, “Long-range surface plasmons in electrode structures,” Appl. Phys. Lett., vol. 43, no. 3, pp. 221-223, 1983 https://doi.org/10.1063/1.94307
  13. H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface Plasmon polaritons,” Appl. Phys. Lett., vol. 88, no. 1, pp. 011110-1-011110-3, 2006 https://doi.org/10.1063/1.2159558
  14. S. Jette-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmonpolariton waveguides,” J. Opt. Soc. Am. A, vol. 23, no. 7, pp. 1757-1767, 2006 https://doi.org/10.1364/JOSAA.23.001757
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, no. 12, pp. 4370-4379, 1972 https://doi.org/10.1103/PhysRevB.6.4370
  16. P. Yeh, Optical Waves in Layered Media (Wiley and Sons, New York, 1988)
  17. R. Kashyap, Fiber Bragg Grating (Academic Press, New York, 1999)