DOI QR코드

DOI QR Code

Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII)

  • Hwang, Yong-Seok (Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Eun-Soo (Department of Electronic Engineering, Kwangwoon University)
  • 발행 : 2008.12.31

초록

본 논문에서는 컴퓨터 집적영상(integral imaging(II))에서 분산 추정을 이용하여 심하게 은폐된 물체의 복원 시 은폐물(occluding object)의 블러링 효과를 제거하는 방법을 제안하였다. 하나의 요소영상(elemental image) 군으로부터 은폐 효과를 제거하여 복원된 영상의 선명도를 향상시키는 정보를 추출하는 방법을 분석하였다. 이를 실행하기 위해 픽업되는 요소영상들이 높은 해상도, 낮은 초점오차(focus error), 큰 깊이감을 가질 필요가 있다. 요소 영상을 픽업할 때 디지털 컴퓨터를 이용한 synthetic aperture integral imaging(SAII)이 채택되었다. 컴퓨터(Computational) II에서는 복원 면의 위치에 따라 복원되는 영상의 촛첨이 맺히는 영역이 달라진다. 심하게 은폐된 물체 영상의 복원은 은폐 물체의 블러링(bluring) 효과가 복원 면에 전체적으로 크게 나타나기 때문에 선명한 복원을 할 수가 없다. 이러한 은폐물의 블러링 효과가 제거된 복원 영상을 얻기 위해 분산 추정이라는 통계적인 방법이 채택되었다.

Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.

키워드

참고문헌

  1. G. Lippmann, “La photographic intergrale,” C. R. Acad. Sci., vol. 146, pp. 446-451, 1908
  2. H. E. Ives, “Optical properties of a Lippmann lenticuled sheet,” J. Opt. Soc. Am., vol. 21, pp. 171-176, 1931 https://doi.org/10.1364/JOSA.21.000171
  3. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am., vol. 58, pp. 71-76, 1968 https://doi.org/10.1364/JOSA.58.000071
  4. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Threedimensional video system based on integral photography,” Opt. Eng., vol. 38, no. 6, pp. 1072-1077, 1999 https://doi.org/10.1117/1.602152
  5. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett., vol. 26, no. 3, pp. 157-159, 2001 https://doi.org/10.1364/OL.26.000157
  6. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt., vol. 40, no. 20, pp. 3318-3325, 2001 https://doi.org/10.1364/AO.40.003318
  7. T. Hamaguchi, T. Fujii, and T. Honda, “Real-time view interpolation system for super multi-view 3D display: Processing implementation and evaluation,” in Stereoscopic Display and Virtual Reality Systems IX, S. A. Benton and M. T. Bolas, eds., Proc. SPIE 4660, pp. 105-115, 2002 https://doi.org/10.1117/12.468023
  8. Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt., vol. 41, no. 26, pp. 5488-5496, 2002 https://doi.org/10.1364/AO.41.005488
  9. J.-S. Jang and B. Javidi, “improved viewing resolution of three-dimensional integral imaging with nonstationary microoptics,” Opt. Lett., vol. 27, no. 5, pp. 324-326, 2002 https://doi.org/10.1364/OL.27.000324
  10. J.-S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett., vol. 27, no. 13, pp. 1144-1146, 2003 https://doi.org/10.1364/OL.27.001144
  11. J.-S. Jang and B. Javidi, “Large depth-of-focus timemultiplexed three-dimensional integral imaging using lenslets with non-uniform focal lengths and aperture sizes,” Opt. Lett., vol. 28, no. 20, pp. 1924-1926, 2003 https://doi.org/10.1364/OL.28.001924
  12. J.-S. Jang and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high resolution three dimensional display,” Opt. Exp., vol. 12, no. 4, pp. 557-563, 2004 https://doi.org/10.1364/OPEX.12.000557
  13. S. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Exp., vol. 12, no. 3, pp. 483-491, 2004 https://doi.org/10.1364/OPEX.12.000483
  14. S. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” IEEE/OSA J. Disp. Tech., vol. 1, no. 2, pp. 354-359 2005 https://doi.org/10.1109/JDT.2005.858879
  15. B. Javidi, R. Ponce-Diaz, and S. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett., vol. 31, no. 8, pp. 1106-1108, 2006 https://doi.org/10.1364/OL.31.001106
  16. Y. S. Hwang, S. Hong, and B. Javidi, “Free view 3D visualization of occluded objects by using computational synthetic aperture integral imaging,” IEEE/OSA J. Disp. Tech., vol. 3, no. 1, pp. 64-70, 2007 https://doi.org/10.1109/JDT.2006.890702