DOI QR코드

DOI QR Code

Enhanced UV-Light Emission in ZnO/ZnS Quantum Dot Nanocrystals

산화아연/황화아연 양자점 나노결정에서의 향상된 자외선 방출

  • Kim, Ki-Eun (Department of Materials Science & Engineering, Korea University) ;
  • Kim, Woong (Department of Materials Science & Engineering, Korea University) ;
  • Sung, Yun-Mo (Department of Materials Science & Engineering, Korea University)
  • 김기은 (고려대학교 신소재공학부) ;
  • 김웅 (고려대학교 신소재공학부) ;
  • 성윤모 (고려대학교 신소재공학부)
  • Published : 2008.12.27

Abstract

ZnO/ZnS core/shell nanocrystals (${\sim}5-7\;nm$ in diameter) with a size close to the quantum confinement regime were successfully synthesized using polyol and thermolysis. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses reveal that they exist in a highly crystalline wurtzite structure. The ZnO/ZnS nanocrystals show significantly enhanced UV-light emission (${\sim}384\;nm$) due to effective surface passivation of the ZnO core, whereas the emission of green light (${\sim}550\;nm$) was almost negligible. They also showed slight photoluminescence (PL) red-shift, which is possibly due to further growth of the ZnO core and/or the extension of the electron wave function to the shell. The ZnO/ZnS core/shell nanocrystals demonstrate strong potential for use as low-cost UV-light emitting devices.

Keywords

References

  1. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 1158, 8706, (1993) https://doi.org/10.1021/ja00072a025
  2. V. L. Colvun, M. C. Schlamp and A. P. Alivisatos, Nature, 370, 354, (1994) https://doi.org/10.1038/370354a0
  3. Y. M. Sung, Y. J. Lee and K. S. Park, J. Am. Chem. Soc., 128, 9003, (2006) https://doi.org/10.1021/ja061858c
  4. J. P. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A.Voigt and J. Liu, Nano Lett., 5, 83, (2005) https://doi.org/10.1021/nl048322e
  5. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G.. Bawendi, J. Phys. Chem. B., 101, 9463, (1997) https://doi.org/10.1021/jp971091y
  6. M. V. Artemyev, U. Woggon, R.Wannemacher, H. Jaschinski and W. Langbein, Nano Lett., 1, 309, (2001) https://doi.org/10.1021/nl015545l
  7. W.-C. Kwak, T.-G. Kim, W.-S. Chae and Y.-M. Sung, Appl. Phys. Lett., 90, 173111, (2007) https://doi.org/10.1063/1.2731682
  8. V. Noack, H. Weller and A. Eychmuller, J. Phys. Chem. B., 106, 8514, (2002) https://doi.org/10.1021/jp0200270
  9. J. A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan and D. Fischer, J. Phys. Chem. B., 104, 319, (2000) https://doi.org/10.1021/jp993224g
  10. M.-K. Lee, T.-G. Kim, W. Kim and Y.-M. Sung, J. Phys. Chem. C., 112, 10079, (2008) https://doi.org/10.1021/jp8018809
  11. R. Bravner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti, F. Fievet, Nano Lett., 6, 866, (2006) https://doi.org/10.1021/nl052326h
  12. T. Gao, Q. H. Li and T. H. Wang, Chem. Mater., 17, 887, (2005) https://doi.org/10.1021/cm0485456
  13. M. J. Murcia, D. L. Shaw, H. Woodruff, C. A. Naumann, B. A. Young and E. C. Long, Chem. Mater., 18, 2219, (2006) https://doi.org/10.1021/cm0505547
  14. J. H. Song, T. Atay, S. Shi, H. Urabe and A.V. Nurmikko Nano Lett., 5, 1557, (2005) https://doi.org/10.1021/nl050813r
  15. Y. Wang, Z. Tang, M. A. Correa-Duarte, L. M. Liz-Marzan and N. A. Kotov, J. Am. Chem. Soc., 125, 2830, (2003) https://doi.org/10.1021/ja029231r
  16. Y. Ding, X. D. Wang and Z. L. Wang, Chem. Phys. Lett., 398, 32, (2004) https://doi.org/10.1016/j.cplett.2004.09.031
  17. J. Li, D. Zhao, X. Meng, Z. Zhang, J. Zhang, D. Shen, Y. Lu and X.Fan, J. Phys. Chem. B., 110, 14685, (2006) https://doi.org/10.1021/jp061563l
  18. J.Geng, B. Liu, L. Xu, F. N. Hu and J. J. Zhu, Langmiur 23, 10286, (2007) https://doi.org/10.1021/la701299w
  19. S.Sapra and D. D.Sarma, Phys. Rev. B., 69, 125304, (2004) https://doi.org/10.1103/PhysRevB.69.125304
  20. C. G. Kim, K. Sung, T. M. Chung, D. Y. Jung, and Y. Kim, Chem. Comm., 16, 2068, (2003) https://doi.org/10.1039/b306163a
  21. E. C. Ashby, G. F. Willard, A. B. Goel, J. Org. Chem., 44, 1221, (1979) https://doi.org/10.1021/jo01322a007
  22. O. Treu-Tler and R. J. Ahelrichs, Chem. Phys., 102, 246, (1995)
  23. M. Ethayaraja, C. Ravikumar, D. Muthkumaran, K. Dutta, R. Bandyopadhyaya, J. Phys. Chem. C., 111, 3246, (2007) https://doi.org/10.1021/jp066066j
  24. K.Vanheusden, L. Warren, H. Seager, R. Tallant, A.Voigt and B. E. Gnade, J. Appl. Phys., 79, 7983, (1996) https://doi.org/10.1063/1.362349
  25. A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B., 104, 1715, (2000) https://doi.org/10.1021/jp993327z
  26. T. Sekiguchi, N. Ohashi and Y. Terada, J. Appl. Phys., 36, L289, (1997) https://doi.org/10.1143/JJAP.36.L289