DOI QR코드

DOI QR Code

제주 대정 및 전국 주요 산지별 마늘 추출물의 생리활성

Physiological Activities of Garlic Extracts from Daejeong Jeju and Major Cultivating Areas in Korea

  • 현선희 (제주대학교 식품생명공학과) ;
  • 김미보 (제주대학교 식품생명공학과) ;
  • 임상빈 (제주대학교 식품생명공학과)
  • Hyun, Sun-Hee (Dept. of Food Bioengineering, Cheju National University) ;
  • Kim, Mi-Bo (Dept. of Food Bioengineering, Cheju National University) ;
  • Lim, Sang-Bin (Dept. of Food Bioengineering, Cheju National University)
  • 발행 : 2008.12.31

초록

제주 대정 마늘의 특성을 파악하고자, 대정 지역별 마늘과 도외지역 및 중국산 마늘 추출물의 생리활성을 측정하였다. 알리신 함량은 단양 마늘이 457 mg/100 g으로 가장 높았으며, 그 다음이 의성(422), 태안(393)과 중국(370), 제주(334)와 남해(328) 마늘 순이었다. 총페놀 함량은 태안 마늘이 3.77 mg GAE/g로 가장 높았고, 남해 마늘이 1.90 mg GAE/g로 가장 낮았다. 제주 대정 마늘의 평균 총페놀 함량은 3.36 mg GAE/g로 전국 주요산지 마늘의 평균 2.87 mg GAE/g에 비하여 높은 함량을 나타내었다. 수용성 항산화 능력은 단양($2.88{\mu}mol$ ascorbic acid equivalents/g of dry extract)과 제주 대정산(평균 2.73)이 가장 높았고, 남해(1.94)와 태안산(1.67)이 가장 낮았다. 지용성 항산화 능력은 남해($5.77{\mu}mol$ trolox equivalents/g of dry extract), 단양(5.31), 제주 대정산(평균 5.29)이 가장 높았고, 태안산(4.19)이 가장 낮았다. 특히 중국산과 남해산은 지용성 항산화 능력이 각각 6.25와 $5.77{\mu}mol/g$로 가장 높은 경향을 보여 수용성 항산화 능력이 가장 낮은 것과는 대조를 나타내었다. 전체적으로 지용성 항산화 능력은 수용성 항산화 능력에 비하여 2배 이상 높은 경향을 나타내었다. 통풍저해 활성은 제주 대정 마늘(평균 31.1%)이 전국 주요산지 마늘(평균 23.2%) 보다 높은 경향을 나타내었다. 산지별 마늘 추출물의 항균활성은 검정 균주 중에 S. aureus에 대하여 가장 높은 활성을 보였고, 그 다음으로 L. monocytogenes, S. Typhimurium, E. coli 순이었으며, 제주 대정 특히 알뜨르 마늘은 4가지 균주 모두에 대하여 가장 높은 항균 활성을 나타내었다.

Physiological activities of the garlic extracts from eight different cultivating areas (three areas from Daejeong Jeju, four major cultivating areas (Danyang, Uiseong, Taean and Namhae) in Korea, and one imported from China) were investigated. Allicin was the highest in the garlic from Danyang (457 mg/100 g), and in the decreasing order of Uiseong (422), Taean (393), China (370), Jeju (334), Namhae (328). Total phenolic content (TPC) from Taean was the highest (3.77 mg GAE/g), while that from Namhae was the lowest (1.90). Average TPC (3.36 mg GAE/g) of the garlics from Daejeong Jeju was higher than that (2.87) from major cultivating areas in Korea. The highest integral antioxidative capacities of water-soluble substance were obtained from the garlics of Danyang ($3.24{\mu}mol$ ascorbic acid equivalents/g) and Daejeong Jeju (2.73), while the lowest ones were from Namhae (1.94) and Taean (1.67). The integral antioxidative capacities of lipid- soluble substance were the highest in the garlics from Namhae ($5.77{\mu}mol$ trolox equivalents/g of dry extract), Danyang (5.31) and Daejeong Jeju (5.29), while the lowest was from Taean (4.19). Average xanthine oxidase inhibition activity (31.1%) in the garlics from Daejeong Jeju was higher than that (23.2%) from major cultivating areas in Korea. All of the garlics showed the strong antimicrobial activity against S. aureus, and in the decreasing order of L. monocytogenes, S. Typhimurium, and E. coli. The garlics from Daejeong Jeju (specially from Alttre) showed the strongest antimicrobial activities against all four bacterial strains tested.

키워드

참고문헌

  1. Shin JH, Ju JC, Kwen OC, Yang SM, Lee SJ, Sung NJ. 2004. Physicochemical and physiological activities of garlic from different area. J Korean Soc Food Sci Nutr 17: 237-245
  2. Shin DB, Seog HM, Kim JH, Lee YC. 1999. Flavor composition of garlic from different area. Korean J Food Sci Technol 31: 293-300
  3. Brodnitz MH, John PV, Linda VD. 1971. Flavor components of garlic extract. J Agric Food Chem 19: 273-275 https://doi.org/10.1021/jf60174a007
  4. Koch HP, Lawson LD. 1996. Garlic: The Science and Therapeutic Application of Allium sativum and Related Species. Williams & Wilkins, Baltimore, USA
  5. Prasad K, Laxdal VA, Yu M, Raney BL. 1996. Evaluation of hydroxyl radical-scavenging properties of garlic. Mol Cell Biochem 154: 55-63 https://doi.org/10.1007/BF00248461
  6. Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, Weiner L. 1998. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim Biophys Acta 1379: 233-244 https://doi.org/10.1016/S0304-4165(97)00104-9
  7. Lee GY, Chang BS. 2007. Literature review on the effect of human skin following garlic extraction. J Beau Tricho 3: 6-12
  8. Han J, Lawson L, Han G, Han P. 1995. A spectrophotometric method for quantitative determination of allicin and total garlic thiosulfinates. Anal Biochem 225: 157-160 https://doi.org/10.1006/abio.1995.1124
  9. Lawson LD, Wood SG, Hughes BG. 1991. HPLC analysis of allicin and other thiosulfinates in garlic glove homogenates. Planta Med 57: 263-270 https://doi.org/10.1055/s-2006-960087
  10. Peschel W, Sanchez-Rabaneda F, Diekmann W, Plescher A, Gartzia I, Jimenez D, Lamuela-Raventos R, Buxaderas S, Codina C. 2006. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem 97: 137-150 https://doi.org/10.1016/j.foodchem.2005.03.033
  11. Besco E, Braccioli E, Vertuani S, Ziosi P, Brazzo F, Bruni R, Saccetti G, Manfredini S. 2007. The use of photochemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem 102: 1352-1356 https://doi.org/10.1016/j.foodchem.2006.05.067
  12. Kweon MH, Hwang HJ, Sung HC. 2001. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J Agric Food Chem 49: 4646-4655 https://doi.org/10.1021/jf010514x
  13. Kim KJ, Do JR, Kim HK. 2005. Antimicrobial, antihypertensive and anticancer activities of garlic extracts. Korean J Food Sci Technol 37: 228-232
  14. Lee JM, Cha TY, Kim SH, Kwon TK, Kwon JH, Lee SH. 2007. Optimization of hot-water extraction condition of garlic using a response surface methodology. Korean J Food Preserv 14: 385-393
  15. Hwang JB, Ha JH, Park WS, Lee YC. 2004. Changes of component on green discolored garlic. Korean J Food Sci Technol 36: 1-8
  16. Paik IK. 2002. A simple photometric assay for total thiosulfinate concentration from Allium sativum. Inje Medical J 23: 197-200
  17. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J Food Sci Technol 37: 233-240
  18. Kim IW, Shin DH, Choi U. 1999. Isolation of antioxidative components from the bark of Rhus verniciflua S. screened from some Chinese medicinal plants. Korean J Food Sci Technol 31: 885-863
  19. Giocosa A, Filiberti R. 1996. Free radicals, oxidative damage and degenerative disease. Eur J Cancer Prev 5: 307-312 https://doi.org/10.1097/00008469-199610000-00001
  20. Im KJ, Lee SK, Park DK, Rhee MS, Lee JK. 2000. Inhibitory effects of garlic on the nitrosation. Agric Chem Biotech 43: 110-115
  21. Byun PH, Kim WJ, Yoon SK. 2001. Effects of extraction conditions on the functional properties of garlic extracts. Korean J Food Sci Technol 33: 507-513
  22. Moon SH, Lee MK. 2001. Inhibitory effects of xanthine oxidase by boiled water extract and tannin from persimmon leaves. Korean J Food Nutr 11: 354-357
  23. Sheo HJ. 1999. The antibacterial action of garlic onion, ginger and red pepper juice. J Korean Soc Food Sci Nutr 28: 94-99
  24. Kyung KH. 2006. Growth inhibitory activity of sulfur compounds of garlic against pathogenic microorganisms. J Fd Hyg Safety 21: 145-152

피인용 문헌

  1. Amino Acid Contents and Various Physiological Activities of Allium victorialis vol.24, pp.2, 2011, https://doi.org/10.7732/kjpr.2011.24.2.150
  2. Correlations between Soil Environment and Bioactive Constituents of Namdo Garlic Harvested in the Non-volcanic Ash Soil Distributed Western Jeju vol.23, pp.2, 2015, https://doi.org/10.7783/KJMCS.2015.23.2.125
  3. Comparison of Biochemical Composition and Antimicrobial Activity of Southern-Type Garlic Grown in the Eastern and Western Regions of Jeju vol.33, pp.5, 2015, https://doi.org/10.7235/hort.2015.15005
  4. 냉동조건에 따른 편마늘의 냉동저장 중 품질변화 vol.24, pp.6, 2008, https://doi.org/10.11002/kjfp.2017.24.6.746
  5. 산지별 고아라 마늘의 주요 성분과 항균활성 비교 vol.51, pp.3, 2008, https://doi.org/10.9721/kjfst.2019.51.3.258
  6. 서산육쪽·코끼리마늘의 흑마늘 숙성 시기별 생리활성 분석 vol.29, pp.5, 2008, https://doi.org/10.5322/jesi.2020.29.5.469