DOI QR코드

DOI QR Code

MEMS based capacitive biosensor for real time detection of bacterial growth

실시간 박테리아 감지를 위한 정전용량방식의 MEMS 바이오센서

  • Seo, Hye-Kyoung (School of Mechanical Engineering, Yonsei University) ;
  • Lim, Dae-Ho (School of Mechanical Engineering, Yonsei University) ;
  • Lim, Mi-Hwa (Department of Microbiology, College of Medicine, Yonsei University) ;
  • Kim, Jong-Baeg (School of Mechanical Engineering, Yonsei University) ;
  • Shin, Jeon-Soo (Department of Microbiology, College of Medicine, Yonsei University) ;
  • Kim, Yong-Jun (School of Mechanical Engineering, Yonsei University)
  • 서혜경 (연세대학교 기계공학부) ;
  • 임대호 (연세대학교 기계공학부) ;
  • 임미화 (연세대학교 의과대학 미생물학교실) ;
  • 김종백 (연세대학교 기계공학부) ;
  • 신전수 (연세대학교 의과대학 미생물학교실) ;
  • 김용준 (연세대학교 기계공학부)
  • Published : 2008.05.31

Abstract

A biosensor based on the measurement of capacitance changes has been designed and fabricated for simple and realtime detection of bacteria. Compared to an impedance measurement technique, the capacitance measurement can make additional measurement circuits simpler, which improves a compatability for integration between the sensor and circuit. The fabricated sensor was characterized by detecting Escherichia coli(E. coli). The capacitance changes measured by the sensor were proportional to E. coli cell density, and the proposed sensor could detect $1{\times}10^6$ cfu/ml E. coli at least. The real-time detection was verified by measuring the capacitance every 20 minutes. After 7 hours of E. coli growth experiment, the capacitance of the sensor in the micro volume well with $4.5{\times}10^5$ cfu/ml of initial E. coli density increased by 20 pF, and that in another wells with $1.5{\times}10^6$ cfu/ml and $8.5{\times}10^7$ cfu/ml initial E. coli density increased by 56 pF and 71 pF, respectively. The proposed sensor has a possibility of the real-time detection for bacterial growth, and can detect E. coli cells with $1.8{\times}10^5$ cfu in nutrient broth in 5 hours.

Keywords

References

  1. P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Grifrm, and R. V. Tauxe, 'Food-related illness and death in the United Stated', Emerg. Infect. Dis., vol. 5, pp. 607-625, 1999 https://doi.org/10.3201/eid0505.990502
  2. S. J. Olsen, L. C. MacKinnon, J. S. Goulding, N. H. Bean, and L. Slutsker, 'Surveillance for foodbornedisease outbreaks -United States, 1993-1997', MMWR, vol. 49, no. ss-1, 2000
  3. K. Inque, K. Miki, K. Tamura, and R. Sakazaki, 'Evaluation of L-pyrrolidonyl peptidase paper strip test for differentiation of members of the family enterobacteriaceae, particularly salmonella spp.', J. Clin. Microbiol., vol. 34, no. 7, pp. 1811-1812, 1996
  4. I. Abdel-Hamid, D. Ivnitski, P. Atanasov, and E. Wilkins, 'Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7', Biosens. Bioelectron., vol. 14, no. 3, pp. 309-316, 1999 https://doi.org/10.1016/S0956-5663(99)00004-4
  5. M. A. Yoshimasu and J. Zawistowski, 'Application of rapid dot blot immunoassay for detection of sal- monella enterica serovar enteritidis in eggs, Poultry, and other foods', Appl. Environ. Microbiol., vol. 67, no. 1, pp. 459-461, 2001 https://doi.org/10.1128/AEM.67.1.459-461.2001
  6. M. Dahlenborg, E. Borch, and P. Radstrom, 'Development of a combined selection and enrichment pcr procedure for clostridium botulinum types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs', Appl. Environ. Microbiol., vol. 67, no. 10, pp. 4781-4788, 2001 https://doi.org/10.1128/AEM.67.10.4781-4788.2001
  7. A. Klausegger, M. Hell, A. Berger, K. Zinober, S. Baier, N. Jones, W. Sperl, and B. Kofler, 'Gram type-specific broad-range PCR amplification for rapid detection of 62 pathogenic bacteria', J. Clin. Microbiol., vol. 37, no. 2, pp. 464-466, 1999
  8. H. O. Fatoyinbo, K. F. Hoettges, S. M. Reddy, and M. P. Hughes, 'An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications', Biosens. Bioelectron., vol. 23, pp. 225-232, 2007 https://doi.org/10.1016/j.bios.2007.04.002
  9. S. I. Kim, H. J. Lee, S. H. Park, H. S. Bhang, J. A. Lee, and S. J. Choi, 'Chemical and biosensors; QCM biosensor for the determination of haptoglobin', J. Kor. Sensors Society, vol. 16, no. 2, pp. 132- 141, 2007 https://doi.org/10.5369/JSST.2007.16.2.132
  10. B. Nguyen, F. A. Tanious, and W. D. Wilson, 'Biosensor-surface plasmon resonance :Quantitative analysis of small molecule-nucleic acid interactions', Methods, vol. 42, pp. 150-161, 2007 https://doi.org/10.1016/j.ymeth.2006.09.009
  11. J. H. Jung and S. K. Lee, 'Chemical and biosensors; Design of multi-layered surface plasmon resonance sensors using optical admittance method and evolution algorithm', J. Kor. Sensors Society, vol. 14, no. 6, pp. 402-408, 2005 https://doi.org/10.5369/JSST.2005.14.6.402
  12. P.A. Noble, 'Hypothetical model for monitoring microbial growth by using capacitance measurements - a minireview', J. Microbiol. Meth., vol, 37, no. 1, pp. 45-49, 1999 https://doi.org/10.1016/S0167-7012(99)00041-X
  13. J. Owicji and J. Parce, 'Biosensors based on the energy metabolism of living cells: The physical chemistry and cell biology of extracellular acidification', Biosens. Bioelectron., vol. 7, no. 4, pp. 257- 272, 1992
  14. M. Varshney and Y. Li, 'Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples', Biosens. Bioelectron., vol. 22, pp. 2408-2414, 2007 https://doi.org/10.1016/j.bios.2006.08.030
  15. A. Bonanni, M.J. Esplandiu, and M. del Valle, 'Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles', Electrochim. Acta, vol. 53, pp. 4022-4029, 2008 https://doi.org/10.1016/j.electacta.2007.11.030
  16. A. Ramkumar, and R. Lal, 'Silica nanoparticle tags for capacitive affinity sensors', Proc. of the 2005 IEEE Engineering in Medicine and Biology, Shanghai, China, September 1-4, 2005