Assessment of 1,4-Dioxane Removal in Polyester Wastewater by Activated Sludge and Its Microbial Property by 16S rDNA

폴리에스테르 중합폐수의 활성슬러지 공정에서의 1,4-다이옥산 제거 및 16S rDNA에 의한 미생물 군집특성 평가

  • Han, Ji-Sun (Department of Environmental Engineering, Inha University) ;
  • So, Myung-Ho (Department of Environmental Engineering, Inha University) ;
  • Kim, Chang-Gyun (Department of Environmental Engineering, Inha University)
  • 한지선 (인하대학교 환경공학과) ;
  • 소명호 (인하대학교 환경공학과) ;
  • 김창균 (인하대학교 환경공학과)
  • Published : 2008.04.30

Abstract

1,4-Dioxane($C_4H_8O_2$), which is used as a solvent stabilizer, could make harmful effects on ecosystem because of its higher solubility, toxicity and carcinogenic by US EPA. From 2011, its discharge limit to waterbody will be regulated at 5 mg/L by Ministry of Environment Republic of Korea. It was thus to investigate that the currently operating activated sludge in polyester manufacturing processes in Gumi can properly treat it to meet with the regulation standard. For that purpose, the removal rate of 1,4-dioxane and its microbial properties were assessed for a few companies(i.e. K, H and T). Its removal efficiency was the most highly recorded in H as 98% and then 77% for K, which met with the regulation standard. However, concentration of 1,4-dioxane of T was 23 mg/L in the effluent, which is more than the regulation standard. Aside from, microbial degradation test was done for 100 ppm of 1,4-dioxane in BSM (Basal salt medium) inoculated with each of activated sludge. After 7 days, 1,4-dioxane was completely removed in the test bottle inoculated with H sludge, 67% in T and 52% in K, which could confirm that the given activated sludge might have different biodegradability against the amount of 1,4-dioxane. Therefore, microbial diversity in each company was investigated by 16s rDNA cloning methods where a species, e.g. Methylibium petroleiphilum PM1, was the greatest observed from H and in lesser from K, but it was not detected from T. Methylibium petroleiphilum PM1 is known to efficiently degrade ether like methyl tertiary-butyl ether(MTBE). It is concluded that the activated sludge in H can be most effectively adopted for a biodegradation of 1,4-dioxane in the concern of industrial sector.

유기용제 안정제로 사용되는 1,4-다이옥산($C_4H_8O_2$)은 높은 용해도와 독성으로 인해 생태계에 유해하며 미국 EPA 의해 발암가능성이 있는 물질로 분류되어 있다. 국내에서도 환경부에 따르면 2011년부터 수계로의 배출허용기준이 5 mg/L로 추진될 예정에 있다. 따라서 구미의 폴리에스테르 제조 공정에서 발생되는 현재 운전 중인 활성슬러지가 1,4-다이옥산을 기준에 적합하도록 적절하게 처리할 수 있는지를 조사하였다. 이와 같은 목적으로 일부 회사(K, H 및 T)를 대상으로 1,4-다이옥산의 제거율 및 미생물학적 속성이 평가되었다. 처리효율은 H사에서 98%로 가장 높았으며 K사는 77%로 두 개 사 모두 유출농도가 기준에 부합하였다. 그러나 T사 유출수의 1,4-다이옥산 농도는 23 mg/L로 기준보다 높았다. 한편, 각 업체의 활성슬러지를 100 ppm의 1,4-다이옥산이 포함된 BSM(Basal salt medium)에 식종하여 생물학적 분해실험을 수행하였다. 7일간의 운전 후, H사의 슬러지를 이용한 시험에서 1,4-다이옥산이 완전히 제거되었으며 T사는 67%, K사는 52%로 이 처리효율의 차이는 1,4-다이옥산의 양이 아닌 주어진 활성 슬러지의 생분해능이 서로 다른 것에 의한 것임을 확인할 수 있었다. 결과적으로 각 산업체의 미생물 다양성이 16s rDNA cloning 방법을 통해 조사되었으며 Methylibium petroleiphilum PM1이 H사에서 가장 많이 발견되었으며 K사에서 적은 양이, 그리고 T사에서는 발견되지 않았다. Methylibium petroleiphilum PM1은 methyl tertiary-butyl ether(MTBE)와 같은 에테르 물질을 효과적으로 제거하는 것으로 알려져 있다. 이는 산업분야의 관점에서 H사의 활성 슬러지가 1,4-다이옥산의 생분해에 가장 효과적으로 적용될 수 있다는 것을 나타낸다.

Keywords

References

  1. Stefan, M. I. and Bolton, J. R, "Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution using the UV/hydrogen peroxide process," Environ. Sci. Technol., 32, 1588-1595(1998) https://doi.org/10.1021/es970633m
  2. National Industrial Chemicals Notification and Assessment Sheme(NICNAS), 1,4-Dioxane Priority Existing Chemical, 7(1998)
  3. Ministry of Environment Republic of Korea Home Page, http://www.me.go.kr, December(2007)
  4. Safarzadeh, A. A., Bolton, J. R. and Caster, S. R, "Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water," Water Res., 31(4), 787-798(1997) https://doi.org/10.1016/S0043-1354(96)00373-9
  5. Klecka, G. M. and Gonsoir, S. J., "Removal of 1,4-dioxane from wastewater," J. Hazard. Mater., 13, 161-168(1986) https://doi.org/10.1016/0304-3894(86)80016-4
  6. Roger, R. H., Graham, E. J., and David, R. R., "Photocatalytic degradation of 1.4 dioxane in aqueous solution," J. Photochem. Photobiol., A, 108, 55-58(1997) https://doi.org/10.1016/S1010-6030(96)04463-2
  7. Burback, B. L. and Perry, J. J., "Biodegradation and bio-transformation of groundwater pollutant mixtures by Mycobacterium vaccae," Appl. Environ. Microbiol., 59, 1025-1029(1993)
  8. Bernhardt, D. and Diekmann, J., "Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain," Appl. Environ. Microbiol., 36, 120-123(1991)
  9. Parales, R. E., Adamus, J. E., White, N., and May, H. D., "Degradation of 1,4-dioxane by an actinomycete in pure culture," Appl. Environ. Microbiol., 60, 4527-4530 (1994)
  10. Sock, S. M., "A comprehensive evaluation of biodegradation as a treatment alternative for the removal of 1,4-dioxane," Master of Science Thesis, Clemson University (1993)
  11. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington D. C., USA(1988)
  12. Park, Y. M., Pyo, H. S., Park, S. J., and Park, S. K., "Development of the analytical method for 1,4-dioxane in water by liquid-liquid extraction," Anal. Chim. Acta, 548, 109-115(2005) https://doi.org/10.1016/j.aca.2005.05.057
  13. Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F., and Reinhardt, R., "The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium strain EbN1," Arch. Microbiol., 183(1), 27-36 (2005) https://doi.org/10.1007/s00203-004-0742-9
  14. Kane, S. R., Chakicherla, A. Y., Chain, P. S., Schmidt, R., Shin, M. W., Legler, T. C., Scow, K. M., Larimer, F. W., Lucas, S. M., Richardson, P. M., and Hristova, K. R., "Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1," J. Bacteriol., 189(5), 1931-45(2007) https://doi.org/10.1128/JB.01259-06
  15. Rendulic, S., Jagtap, P., Rosinus, A., Eppinger, M., Baar, C., Lanz, C., Keller, H., Lambert, C., Evans, K. J., Goesmann, A., Meyer, F., Sockett, R. E., and, Schuster, S. C., "A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective," Science, 303(5658), 89-92(2004) https://doi.org/10.1126/science.1091110