A Study on the TCE/PCE Removal Using Biofiltration and the Microbial Communities Variation Using DGGE Method

생물 여과를 이용한 TCE/PCE제거 및 DGGE법을 이용한 관련미생물 군집변화에 관한 연구

  • Kim, Eung-In (Department of Environmental Engineering, Pusan National University) ;
  • Park, Ok-Hyun (Department of Environmental Engineering, Pusan National University) ;
  • Jung, In-Gyung (Pohang Eco Industrial Park, Research institute of industrial Science & Technology)
  • 김응인 (부산대학교 사회환경시스템공학과) ;
  • 박옥현 (부산대학교 사회환경시스템공학과) ;
  • 정인경 ((재)포항산업과학연구원)
  • Published : 2008.11.30

Abstract

The removals of TCE and PCE vapor with or without a supply of toluene as a primary substrate were compared in a biofiltration process, and the variations of microbial communities associated with the removal were also investigated. As a result of investigations on the removals of TCE/PCE in a biofilter B within which TCE/PCE-acclimated sludge was attached on the surface of media without a supply of primary substrate, and those in another biofilter A where toluene-acclimated sludge was attached with a supply of toluene as a primary substrate, followings were found: (i) parts of microbes responsible to the decomposition of toluene vapor participate in the removal of chlorinated VOCs such as TCE and PCE, and (ii) effective biological removals of TCE and PCE vapor do not necessarily need cometabolism. Sequencing of 16S rDNA obtained from the band profile of DGGE (Denaturating Gradient Gel Electrophoresis), it was confirmed that: (i) uncultured alpha proteobacterium, uncultured Desulfitobacterium, uncultured Rhodobacteraceae bacterium, Cupriavidus necator, and Pseudomonas putida were found to be toluene-decomposing microbes, (ii) alpha proteobacterium HTCC396 is a TCE-removing microbe, (iii) Desulfitobacterium sp. is a PCE-decomposing microbe, and (iv) particularly, uncultured Desulfitobacterium sp. is probably a microbe decomposable not only toluene but also various chlorinated VOC vapor including TCE and PCE.

생물학적 처리방법인 biofiltration을 이용하여 1차 기질 toluene의 존재여부에 따른 TCE와 PCE의 제거율을 비교하였다. 그리고 TCE와 PCE의 제거과정에 관련된 미생물의 군집변화를 조사하였다. TCE와 PCE혼합증기 제거율을 순치시킨 슬러지를 메디아 표면에 부착한 biofilter B를 이용해서 1차 기질로서 toluene증기 공급이 없는 상태에서 TCE/PCE 혼합증기제거율을 조사하고 또한 toluene증기로 순치시킨 슬러지를 부착한 별도의 biofliter A에서 1차 기질로서 toluene증기를 공급하는 상태에서 TCE/PCE 혼합증기의 제거율을 조사한 결과 (i) biofilter운전초기에는 PCE제거율이 TCE제거율보다 현저히 높지만, biofilter운전 지속기간의 증가에 따라 두 물질의 제거율이 증가하다가 나중에는 두 가지 물질의 제거수준이 비슷해진 상태에서 정체되는 경향이 있고, 1차 기질로서 toluene증기를 공급하지 않은 경우가 공급한 경우보다 현저히 TCE/PCE 제거율이 높으며, 두 물질의 생물여과에 의한 제거율이 동등수준에 도달하는 시간이 1차 기질을 공급하는 경우에 공급하지 않는 경우보다 빠르게 도달하였다. 이 실험은 (ii)일부의 toluene 분해 미생물이 TCE와 PCE 증기 등 염소화 휘발성 유기물 증기의 분해에도 관여하고, TCE/PCE 증기의 생물학적 저감과정에서 공동대사가 반드시 필요하지는 않는 것임을 시사한다. DGGE밴드의 16S rDNA의 염기서열을 결정한 결과 (i) uncultured alpha proteobacterium, uncultured Desulfitobacterium sp., uncultured Rhodobacteraceae bacterium, Cupriavidus necator, Pseudomonas putida 등이 toluene 분해 미생물들이었고 (ii) alpha proteobacterium HTCC396이 TCE 제거미생물이고, (iii) Desulfitobacterium sp.이 PCE 분해에 관여하는 것으로 추정된다. (iv) 특히 uncultured Desulfitobacterium sp.은 toluene뿐만 아니라 다양한 염소계 화합물을 제거시킬 수 있는 미생물임이 확인되었다.

Keywords

References

  1. 김경진, 박옥현, "운전조건에 따른 $O_3/UV$, $TiO_2/UV$, 및 $O_3/TiO_2/UV$시스템의 BTEX증기 처리에 관한 비교 연구," 한국대기환경학회지, 24(1), 91-99(2008) https://doi.org/10.5572/KOSAE.2008.24.1.091
  2. 박옥현, 김용찬, 정인경, 우혜진, "미생물을 이용한 휘발성유기화합물(VOC)가스처리에 관한 실험적 연구(II)-Trichloroethylene의 공동대사 처리," 대한환경공학회지, 24(2), 261-268(2002)
  3. Wang, J. H. and Ray, M. B., "Application of ultraviolet photooxidation to remove organic pollutants in the gas phase," Sep. and Purification Technol., 19, 11-20(2000) https://doi.org/10.1016/S1383-5866(99)00078-7
  4. Park, O. H. and Jung, I. G., "Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofilteration," J. Biosci. Bioeng., 100(6), 657-661 (2005) https://doi.org/10.1263/jbb.100.657
  5. Shinoda, Y., Sakia, Y., Uenishi, H., Uchihashi, Y., A., Yukawa, H., Yurimoto, H., and Kato, N., "Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1," AEM, 70, 1385-1392(2004) https://doi.org/10.1128/AEM.70.3.1385-1392.2004
  6. Clegg, C. D., Lovell, R. D. L., and Hobbs, P. J., "The impact of grassland management regime on the community structure of selected bacterial groups in soils," FEMS Microbiol. Ecol., 43(2), 263-270(2002)
  7. Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J., "Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA," Appl. Environ. Microbiol., 63, 4516-4522(1997)
  8. Farnleitner, A. H., Zibuschka, F., Burtscher, M. M., Lindner, G., Reischer, G., and Mach, R. L., "Eubacterial 16S-rRNA amplicon profiling: a rapid technique for comparison and differentiation of heterotrophic platecount communities from drinking water," Int. J. Food Microbial, 92, 333-375(2004) https://doi.org/10.1016/j.ijfoodmicro.2003.08.014
  9. Nakagawa, T., Sato, S., Yamamoto, Y., and Furkui, M., "Successive changes in community structure of an ethlybenzene- degrading sulfate-reducing consortium," Water Res., 36, 2813-2823(2002) https://doi.org/10.1016/S0043-1354(01)00502-4
  10. 임정훈, 우혜진, 전병희, 이태호, 김창원, "MBBR에서 부착미생물의 거동과 공정성능에 대한 용존 산소농도의 영향," 대한환경공학회지, 24(12), 2163-2173(2002)
  11. Liao, Q., Tian, X., Chen, R., and Zhu, X., "Mathematical model for gas-liquid two-phase flow and biodegradation of a low concentration volatile organic compound (VOC) in a trickling biofilter," Int. J. Heat Mass Transfer., 51, 1780-1792(2008) https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.007
  12. Park, O. H. and Jung, I. G., "A model study based on experiments on toluene removal under high load condition in biofilter," Biochem. J., 28, 269-274(2006)
  13. Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J., "16S ribosomal DNA ampilfication for phylogenetic study," J. Bacteriol., 137(2), 697-703(1991)
  14. Nishimura, M., Kita, T., Kogure, K., Ohwasa, K., and simidu, U., "A new method to detect viable bacteric in natural seawater using 16S rRNA oligonucleotide probe," J. Oceanography, 49, 51-56(1993) https://doi.org/10.1007/BF02234008
  15. Muyzer, G., Waal, E. C. D., and Uitierlinden, A. G., "Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction- amplified genes coding for 16S rRNA," Appl. Environ. Microbiol., 59, 695-700(1993)
  16. 정인경, 박옥현, 우혜진, "생물여과 시스템에서 Pseudomonas putida F1의 공동대사에 의한 TCE (trichloroethylene) 처리(I)-효소의 생성과 활성도 쇠퇴," 대한환경공학회지, 25(11), 1388-1392(2003)
  17. Park, J. Y. and Sang, B. I., "Change of sludge consortium in response to sequential adaption to benzene, toluene, and o-xylene," J. Microbiol. Biotechnol., 17(11), 1772-1781(2007)
  18. Sadaie, T., Sadaie, A., Takada, M., Hamano, K., Ohnishi, J., Ohta, N., Matsumoto, K., and Sadaie, Y., "Reducing sludge production and the domination of Comamonadaceae by reducing the oxygen supply in the wastewater treatment procedure of a food-processing factory," Biosci. Biotechnol. Biochem., 71(3), 791-799(2007) https://doi.org/10.1271/bbb.60632
  19. Bowman, J. P., McCammon, S. A., Brown, M. V., Nichols, D. S., and McMeekin, T. A., "Diversity and association of psychrophilic bacteria in Antarctic sea ice," Appl. Environ. Microbiol., 63(8), 3068-3078(1997)
  20. Phung, N. T., Lee, J., Kang, K. H., Chang, I. S., Gadd, G. M., and Kim, B. H., "Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences," FEMS Microbiol. Lett., 233(1), 77-82(2004) https://doi.org/10.1016/j.femsle.2004.01.041
  21. Hoshino, T., Terahara, T., Yamada, K., Okuda, H., Suzuki, I., Tsuneda, S., Hirata, A., and Inamori, Y., "Longterm monitoring of the succession of a microbial community in activated sludge from a circulation flush toilet as a closed system," FEMS Microbiol. Ecol., 55(3), 459-470(2006) https://doi.org/10.1111/j.1574-6941.2005.00047.x
  22. Gerritse, J., Renard, V., Pedro Gomes, T. M., Lawson, P. A., Collins, M. D., and Gottschal, J. C., "Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols," Arch. Microbiol., 165(2), 132-140(1996) https://doi.org/10.1007/s002030050308
  23. ijenhuis, I., Nikolausz, M., Koth, A., Felfoldi, T., Weiss, H., Drangmeister, J., Grossmann, J., Kastner, M., and Richnow, H. H., "Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers," Chemosphere, 67(2), 300-311(2007) https://doi.org/10.1016/j.chemosphere.2006.09.084
  24. van der Meer, J. R., Werlen, C., Nishino, S. F., and Spain, J. C., "Evolution of a pathway for chlorobenzen metabolism leads to natural attenuation in contaminated groundwater," Appl. Environ. Microbiol., 64(11), 4185-4193(1998)
  25. Winderl, C., Anneser, B., Griebler, C., Meckenstock, R. U., and Lueders, T., "Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume," Appl. Environ. Microbiol., 74(3), 792-801(2008) https://doi.org/10.1128/AEM.01951-07
  26. De Carcer, D. A., Martin, M., Karlson, U., and Rivilla, R., "Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenylpolluted soil after introduction of willow trees for rhizoremediation," Appl. Environ. Microbiol., 73(19), 6224-6232(2007) https://doi.org/10.1128/AEM.01254-07
  27. Connon, S. A., Tovanabootr, A., Dolan, M., Vergin, K., Giovannoni, S. J., and Semprini, L., "Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater," Environ. Microbiol., 7(2), 165-178(2005) https://doi.org/10.1111/j.1462-2920.2004.00680.x