References
- T. Ando, Topics on operator inequalities, Lecture Note Hokkaido Univ., Sapporo 1978.
- T. Ando, On some operator inequalities, Math. Ann., 279(1987), 157-159. https://doi.org/10.1007/BF01456197
- T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197/198(1994), 113-131. https://doi.org/10.1016/0024-3795(94)90484-7
- H. Bae and Y. Lim, On some Finsler structures of symmetric cones, Forum Math., to appear.
- Ph. Bougerol, Kalman filtering with random coefficients and contractions, SIAM J. Control Optim., 31(1993), 942-959. https://doi.org/10.1137/0331041
- G. Corach, H. Porta and L. Recht, Geodesics and operator means in the space of positive operators, International J. of Math., 4(1993), 193-202. https://doi.org/10.1142/S0129167X9300011X
- J. Faraut and A. Koranyi, Analysis on symmetric cones, Clarendon Press, Oxford 1994.
- L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. and Appl. Math., 86(1997), 149-175. https://doi.org/10.1016/S0377-0427(97)00153-2
- L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity, 1(1997), 331-357. https://doi.org/10.1023/A:1009701824047
- L. Faybusovich, Euclidean Jordan algebras and generalized affine-scaling vector fields, preprint.
- L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z., 239(2002), 117-129. https://doi.org/10.1007/s002090100286
- M. Fiedler and V. Ptak, A new positive definite geometric mean of two positive definite matrices, Linear Algebra Appl., 251(1997), 1-20. https://doi.org/10.1016/0024-3795(95)00540-4
-
T. Furuta, A
${\geq}$ B${\geq}$ 0 assures$(B^{r}\;A^{p}\;B^{r})^{1/q}$ ${\geq}$ $B^{(p+2r)/q}$ for r${\geq}$ 0; p${\geq}$ 0 with (1 + 2r)q${\geq}$ p + 2r, Proc. Amer. Math. Soc., 101(1987), 85-87. - F. Hansen, An operator inequality, Math. Ann., 246(1980), 249-250. https://doi.org/10.1007/BF01371046
- O. G¨uler, Barrier functions in interior point methods, Mathematics of Operations Research, 21(1996), 860-885. https://doi.org/10.1287/moor.21.4.860
- M. Koecher, Jordan algebras and their applications, Lecture Notes, University of Minnesota, 1962.
- A. Koranyi, Monotone functions on formally real Jordan algebras, Math. Ann., 269(1984), 73-76. https://doi.org/10.1007/BF01455996
- F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224. https://doi.org/10.1007/BF01371042
- S. Lang, Fundamentals of differential geometry, Graduate Texts in Math., Springer 1999.
- J. D. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly, 108(2001), 797-812. https://doi.org/10.2307/2695553
- J. D. Lawson and Y. Lim, Symmetric sets with midpoints and algebraically equivalent theories, Result. Math., 46(2004), 37-56. https://doi.org/10.1007/BF03322869
- J. D. Lawson and Y. Lim, Means on dyadic symmetric sets and polar decompositions, Abh. Math. Sem. Univ. Hamburg, 74(2004), 135-150. https://doi.org/10.1007/BF02941530
- J. D. Lawson and Y. Lim, Geometric means and reflection quasigroups, Quasigroups and Related Systems, 14(2006), 43-59.
- J. D. Lawson and Y. Lim, Symmetric spaces with convex metrics, Forum Math., to appear.
- J. D. Lawson and Y. Lim, Metric convexity of symmetric cones, submitted.
- Y. Lim, Finsler metrics on symmetric cones, Math. Ann., 316(2000), 379-389. https://doi.org/10.1007/s002080050017
- Y. Lim, Geometric means on symmetric cones, Arch. der Math., 75(2000), 39-45. https://doi.org/10.1007/s000130050471
- Y. Lim, Applications of geometric means on symmetric cones, Math. Ann., 319(2001), 457-468. https://doi.org/10.1007/PL00004442
- Y. Lim, Fixed points of monotone symplectic mappings, Math. Ann., 321(2001), 601-613. https://doi.org/10.1007/s002080100241
- Y. Lim, Best approximation in Riemannian geodesic submanifolds of positive definite matrices, Canad. J. Math., 56(2004), 776-793. https://doi.org/10.4153/CJM-2004-035-5
- K. -H. Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Geometriae Dedicata, 95(2002), 115-156. https://doi.org/10.1023/A:1021221029301
- Y. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming, Mathematics of Operations Research, 22(1997), 1-42. https://doi.org/10.1287/moor.22.1.1
- R. D. Nussbaum and J. E. Cohen, The arithmetic-geometric mean and its generalizations for noncommuting linear operators, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4), 15(1988), 239-308.
- R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Memoirs of AMS, 21(1988).
- R. D. Nussbaum, Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations, Differential and Intergral Equations, 7(1994), 1649-1707.
- G. K. Pedersen and M. Takesaki, The operator equation THT = K; Proc. Amer. Math. Soc., 36(1972), 311-312.
- W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys., 8(1975), 159-170. https://doi.org/10.1016/0034-4877(75)90061-0
- O. S. Rothaus, Domains of positivity, Abh. Math. Sem. Univ. Hamburg, 24(1960), 189-235. https://doi.org/10.1007/BF02942030
- G. Trapp, The Ricatti equation and geometric mean, Contemporary Math., 47(1985), 437-445. https://doi.org/10.1090/conm/047/828317
- A. Unterberger and H. Upmeier, Pseudodifferential analysis on symmetric cones, Studies in Advanced Mathematics 1996.
- H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras, North Holland Mathematical Studies, 1985.