Fuzzy Subalgebras of Type (α, β) in BCK/BCI-Algebras

  • Jun, Young Bae (Department of Mathematics Education (and RINS), Gyeongsang National University)
  • 투고 : 2006.05.23
  • 발행 : 2007.09.23

초록

Using the belongs to relation (${\in}$) and quasi-coincidence with relation (q) between fuzzy points and fuzzy sets, the concept of (${\alpha}$, ${\beta}$)-fuzzy subalgebras where ${\alpha}$ and ${\beta}$ areany two of {${\in}$, q, ${\in}{\vee}q$, ${\in}{\wedge}q$} with ${\alpha}{\neq}{\in}{\wedge}q$ was already introduced, and related properties were investigated (see [3]). In this paper, we give a condition for an (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra to be an (${\in}$, ${\in}$)-fuzzy subalgebra. We provide characterizations of an (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra. We show that a proper (${\in}$, ${\in}$)-fuzzy subalgebra $\mathfrak{A}$ of X with additional conditions can be expressed as the union of two proper non-equivalent (${\in}$, ${\in}$)-fuzzy subalgebras of X. We also prove that if $\mathfrak{A}$ is a proper (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra of a CK/BCI-algebra X such that #($\mathfrak{A}(x){\mid}\mathfrak{A}(x)$ < 0.5} ${\geq}2$, then there exist two prope non-equivalent (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebras of X such that $\mathfrak{A}$ can be expressed as the union of them.

키워드

참고문헌

  1. S. A. Bhatti, M. A. Chaudhry and B. Ahmad, On classification of BCI-algebras, Math. Jpn., 34(6)(1989), 865-876.
  2. S. K. Bhakat and P. Das, ($\epsilon$,$\epsilon$v q)-fuzzy subgroup, Fuzzy Sets and Systems, 80(1996), 359-368. https://doi.org/10.1016/0165-0114(95)00157-3
  3. Y. B. Jun, On (${\alpha},{\beta}$)-fuzzy subalgerbas of BCK/BCI-algebras, Bull. Korean Math. Soc., 42(4)(2005), 703-711. https://doi.org/10.4134/BKMS.2005.42.4.703
  4. J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Korea (1994).
  5. P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599. https://doi.org/10.1016/0022-247X(80)90048-7