π-Morphic Rings

  • Received : 2006.04.10
  • Published : 2007.09.23

Abstract

An element $a$ in a ring R is called left morphic if $$R/Ra{\simeq_-}1(a)$$. A ring is called left morphic if every element is left morphic. In this paper, an element $a$ in a ring R is called left ${\pi}$-morphic (resp. left G-morphic) if there exists a positive number $n$ such that $a^n$ (resp. $a^n{\neq}0$) is left morphic. A ring R is called left ${\pi}$-morphic (resp. left G-morphic) if every element is left ${\pi}$-morphic (resp. left G-morphic). The Morita invariance of left ${\pi}$-morphic (resp. left G-morphic) rings is discussed. Several relevant properties are proved. In particular, it is shown that a left Noetherian ring R with $M_4(R)$ left G-morphic or $M_2(R)$ left morphic is QF. Some known results of left morphic rings are extended to left G-morphic rings and left ${\pi}$-morphic rings.

Keywords

References

  1. H. Y. Chen, Power-substitution, exchange rings and unit $\pi$-regularity, Comm. Algebra, 28(11)(2000), 5223-5233. https://doi.org/10.1080/00927870008827151
  2. J. L. Chen and N. Q. Ding, On general principally injective rings, Comm. Algebra, 27(5)(1999), 2097-2116. https://doi.org/10.1080/00927879908826552
  3. J. L. Chen and Y. Zhou, Morphic rings as trivial extentions, Glasgow Math. J., 47(2005), 139-148. https://doi.org/10.1017/S0017089504002125
  4. J. L. Chen, Y. Zhou and Z. M. Zhu, GP-injective rings need not be P-injective, Comm. Algebra, 33(7)(2005), 2395-2402. https://doi.org/10.1081/AGB-200058375
  5. G. Erlich, Unit and one-sided units in regular rings, Trans. Amer. Math. Soc., 216(1976), 81-90. https://doi.org/10.1090/S0002-9947-1976-0387340-0
  6. J. L. Gomez Pardo and P. A. Guil Asensio, Torsionless modules and rings with finite essential socle, Lecture Notes in Pure and Appl. Math., 201(1998), 261-278.
  7. K. R. Goodearl, "Von Neumann Regular Rings", Second Edition. Krieger, Malabar, Florida, 1991.
  8. D. Jonah, Rings with the minimum condition for principal right ideals have the maximal condition for principal left ideal, Math. Z., 113(1970), 106-112.
  9. W. K. Nicholson and E. Sanchez Campos, Morphic modules, Comm. Algebra, 33(8)(2005), 2629-2647. https://doi.org/10.1081/AGB-200064348
  10. W. K. Nicholson and E. Sanchez Campos, Principal rings with the dual of the isomorphism theorem, Glasgow Math. J., 46(2004), 181-191. https://doi.org/10.1017/S0017089503001654
  11. W. K. Nicholson and E. Sanchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271(2004), 391-406. https://doi.org/10.1016/j.jalgebra.2002.10.001
  12. W. K. Nichoson and M. F. Yousif, "Quasi-Frobenius Ring", Cambridge University Press, 2003.
  13. E. A. Rutter, Rings with the principal extension property, Comm. Algebra, 3(2)(1975), 203-212. https://doi.org/10.1080/00927877508822043
  14. M. F. Yousif and Y. Zhou, Rings for which certain elements have the principal extensions property, Algebra Colloq., 10(4)(2003), 501-512.
  15. C. M. Yue, On annihilator ideals IV, Riv. Mat. Univ. Parma., 13(4)(1987), 19-27.