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Abstract. An element a in a ring R is called left morphic if R/Ra ∼= l(a). A ring R

is called left morphic if every element is left morphic. In this paper, an element a in a

ring R is called left π-morphic (resp. left G-morphic) if there exists a positive number

n such that an (resp. an 6= 0) is left morphic. A ring R is called left π-morphic (resp.

left G-morphic) if every element is left π-morphic (resp. left G-morphic). The Morita

invariance of left π-morphic (resp. left G-morphic) rings is discussed. Several relevant

properties are proved. In particular, it is shown that a left Noetherian ring R with M4(R)

left G-morphic or M2(R) left morphic is QF. Some known results of left morphic rings are

extended to left G-morphic rings and left π-morphic rings.

1. Introduction

Throughout the paper, all rings are associative with identity and all modules
are unitary. Let R be a ring. The right (resp. left) annihilator of a subset X
of R is denoted by r(X) (resp. l(X)). The Jacobson radical, left singular ideal,
right singular ideal, left socle and the right socle of R are denoted by J(R), Z(RR),
Z(RR), Soc(RR) and Soc(RR), respectively. Using I ⊆ess

RR to show that I is an
essential left ideal of R. And we write U(R) for the group of all units of R.

By the well known theorem of Erlich [5], a map α in the endomorphism ring
of a module M is unit regular if and only if it is regular and M/Im(α) ∼= Ker(α).
In [11], Nicholson and Sánchez Campós introduced and studied left morphic rings
(which were further studied in [3, 9, 10]). An element a in a ring R is said to be left
morphic if R/Ra ∼= l(a), equivalently, there exists b ∈ R such that l(a) = Rb and
l(b) = Ra. A ring R is called left morphic if every element is left morphic. Right
morphic rings are defined analogously.

In this paper, the notion of left morphic rings is extended to left π-morphic (resp.
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left G-morphic) rings. An element a in a ring R is called left π-morphic (resp. left
G-morphic) if there exists n > 0 such that an (resp. an 6= 0) is left morphic. The
ring itself is called left π-morphic (resp. left G-morphic) if every element is left π-
morphic (resp. left G-morphic). Right π-morphic (resp. right G-morphic) rings are
defined analogously. A ring R is called morphic if it is left and right morphic. The
π-morphic (resp. G-morphic) rings are defined similarly. Some examples show that
left π-morphic rings need not be left morphic. Some known results of left morphic
rings are extended to left π-morphic (resp. left G-morphic) rings. The Morita
invariance of these notions is discussed. Several relevant properties are proved. In
particular, it is shown that a left Noetherian ring R with M4(R) left G-morphic or
M2(R) left morphic is QF. Left π-morphic (resp. left G-morphic) rings are directly
finite. If R is left π-morphic, then the same is true of the corner ring eRe for any
idempotent e ∈ R. Furthermore, it is shown that if R is a local and left G-morphic
ring, then the following conditions are equivalent: (1) J(R) is nilpotent; (2) J(R)
is nil and Soc(RR) 6= 0; (3) R has ACC on principal left ideals and Soc(RR) 6= 0.
In this case, R is left morphic.

2. Examples

We start this section with the following.

Definition 2.1. Let R be a ring. An element a in R is called left π-morphic if there
exists n > 0 such that R/Ran ∼= l(an). The ring itself is said to be left π-morphic
if every element is left π-morphic.

Lemma 2.2. Let R be a ring. An element a in R is left π-morphic if and only if
there exist n > 0 and b ∈ R such that l(an) = Rb and l(b) = Ran.

Proof. By Definition 2.1 and [11, Lemma 1]. �

Proposition 2.3. Let R be a ring, and let a in R be left π-morphic. Then the
following conditions are equivalent:
(1) l(a) = 0.
(2) Ra = R.
(3) a ∈ U(R).

Proof. By Lemma 2.2, there exist n > 0 and b ∈ R such that Ran = l(b), Rb = l(an).
(1) ⇒ (2) If l(a) = 0, then it is easy to see that l(an) = 0. Hence b = 0, Ran =

l(0) = R, and so Ra = R.
(2) ⇒ (3) If Ra = R, there exists r ∈ R such that ra = 1, so rnan = 1 and

hence Ran = R. Thus b = 0, and l(a) ⊆ l(an) = 0. And ar − 1 ∈ l(a), ar = 1. We
are done.

(3) ⇒ (1) is clear. �

A ring R is called directly finite if ab = 1 implies ba = 1 for any a, b ∈ R. R is
said to be stably finite if Mn(R) is directly finite for all n > 0.
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Corollary 2.4. Let R be a left π-morphic ring. Then it is directly finite.

Recall that a ring R is called unit π-regular [1], if for any a ∈ R, there exists
n > 0 such that an is unit regular.

Lemma 2.5. Let R be a regular ring. Then it is left π-morphic if and only if it is
unit π-regular.

Proof. Since R is a regular ring, an is unit regular if and only if an is left morphic
for any a ∈ R and n > 0 (by [11, Example 4] and [11, Proposition 5]). The result
follows. �

Lemma 2.6. Let R be a unit π-regular ring. Then S = R/I is a unit π-regular
ring for any ideal I of R.

Proof. For any a ∈ R, there exist n > 0 and u ∈ U(R) such that an = anuan. So
(a+ I)n = an + I = anuan + I = (an + I)(u+ I)(an + I). This means that S = R/I
is a unit π-regular ring. �

Now, an example is given to show that the converse of Corollary 2.3 is false,
even if R is regular and stably finite.

Example 2.7 [7]. Choose a field F , let T = F [[t]] be the ring of formal power
series over F in an indeterminate t, and let K denote the quotient field of T . Let
S = {x ∈ EndF (T )|(x− a)(tnT ) = 0, for some a ∈ K and n > 0}. By [7, Example
4.26], for each x ∈ S there is an unique element ϕx ∈ K such that (x−ϕx)(tnT ) = 0
for some n > 0. Since K is commutative, the map ϕ : S → K also defines a ring
map ϕ : Sop → K, where Sop denotes the opposite ring of S. Consequently, the set
R = {(x, y) ∈ S×Sop|ϕx = ϕy} is a subring of S×Sop. Inasmuch R is a subdirect
product of S and Sop, then R is regular, stably finite but not left π-morphic.

Proof. From [7, Example 5.10], we know that R is a regular and stably finite ring.
Assume that R is left π-morphic, by Lemma 2.5, R is unit π-regular. In fact, as an
element of EndF (T ), tn is injective but not surjective. If there exists u ∈ S such
that tnutn = tn, then utn = 1, and so tn = u−1, a contradiction. Hence, S is not
unit π-regular. By Lemma 2.6, we conclude that R is not left π-morphic. �

Recall that R is called right π-P-injective if there exists n > 0 such that Ran =
lr(an), which is also called right GP-injective in [15]. But in this paper, we call R a
right GP-injective ring [2], if for any 0 6= a ∈ R, there exists n > 0 with an 6= 0 such
that Ran = lr(an). An element a in R is said to be left G-morphic if there exists
n > 0 with an 6= 0 such that an is left morphic, equivalently, there exist n > 0 with
an 6= 0 and b ∈ R such that l(an) = Rb and l(b) = Ran. The ring itself is called left
G-morphic if every element is left G-morphic.

Lemma 2.8. Let R be a left π-morphic (resp. left G-morphic) ring. Then it is
right π-P-injective (resp. right GP-injective).

Proof. If R is a left G-morphic ring, then for any a in R, there exist a positive
number n with an 6= 0 and b ∈ R such that Ran = l(b) and l(an) = Rb. So
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lr(an) = lr(Ran) = lrl(b) = l(b) = Ran, equivalently, R is right GP-injective.
Similarly, if R is a left π-morphic ring, then it is right π-P-injective. �

Theorem 2.9. Let R be a local and left G-morphic ring. Then the following
conditions are equivalent:
(1) J(R) is nilpotent.
(2) J(R) is nil and Soc(RR) 6= 0.
(3) R has ACC on principal left ideal and Soc(RR) 6= 0.
In this case, R is left morphic.

Proof. (1) ⇒ (2) and (3). If J(R) is nilpotent, then it is clear that J(R) is nil and
R is left perfect. Hence R has ACC on principal left ideals (by Jonah’s Theorem
[8]), and Soc(RR) ⊆ess RR. Moreover, by Lemma 2.8, R is right GP-injective. So
Soc(RR) ⊆ Soc(RR) by [2, Lemma 2.2], and hence Soc(RR) 6= 0.

(2) ⇒ (1). By hypothesis, there exists a nonzero minimal left ideal Ra of R.
Since R is left G-morphic, there exist n > 0 with an 6= 0 and c ∈ R such that
Ran = l(c) and Rc = l(an). Hence R/Rc = R/l(an) ∼= Ran = Ra, Rc is a maximal
left ideal of R and so J(R) = Rc.

Assume that J(R)k = Rck for some positive number k ≥ 1. J(R)k+1 = J(R) ·
Rck = J(R) · ck = Rc · ck = Rck+1. By induction, J(R)k = Rck for every k ≥ 1.
Since J(R) is nil, there exists k > 0 such that ck = 0 and so J(R)k = Rck = 0.

(3) ⇒ (1). By the proof of (2) ⇒ (1), J(R) = Rc. If c is nilpotent, then J(R)
is nilpotent. If c is not nilpotent, there exist positive numbers n0 > 0 and n1 > 0
such that 0 6= cn0 and 0 6= c2n0n1 are left morphic. By induction, there exists
{c2in0n1···ni}∞i=0 such that 0 6= c2in0n1···ni is left morphic for any i ≥ 0, and denotes
2in0n1 · · ·ni by ti. Then l(cti) ⊆ l(cti+1) dues to ti < ti+1. Because R has ACC
on principal left ideals, there exists n > 0 such that l(ct0) ⊆ l(ct1) ⊆ · · · ⊆ l(ctn) =
l(ctn+1). We can choose a, b ∈ R such that Ra = l(ctn), l(a) = Rctn = J(R)tn and
Rb = l(ctn+1), l(b) = Rctn+1 = J(R)tn+1 . Then Ra = Rb, there exist u, v ∈ R such
that a = ub and b = va. Thus a = uva, (1 − uv)a = 0. uv 6∈ J(R) because a 6= 0.
This implies uv ∈ U(R) (as R is a local ring) and so u ∈ U(R) by Proposition 2.3.
But 0 = ctna = ctnub , ctnu ∈ l(b) = Rctn+1 = J(R)tn+1 , it follows that ctn ∈
J(R)tn+1 = Rctn+1 . Let ctn = rctn+1 , r ∈ R, it implies that (1− rctn+1−tn)ctn = 0.
Thus rctn+1−tn 6∈ J(R) because ctn 6= 0, a contradiction. Hence c is nilpotent and
so J(R) is nilpotent.

Now, we show the last part. Suppose that J(R)n = 0 for some n > 0. If
n = 1, then R is division and so it is left morphic. If n > 1, we can assume that
J(R)n−1 6= 0. Let 0 6= b ∈ J(R)n−1, there exists m ≥ 1 such that bm 6= 0 is left
morphic. Moreover, for any 0 6= a ∈ J(R)n−1, a2 = 0, so m = 1. Thus b is left
morphic, there exists c ∈ R such that l(b) = Rc and J(R) ⊆ l(b) = Rc 6= R. Hence
J(R) = Rc and cn = 0. Therefore, by [11, Theorem 9], R is a left morphic ring. �

The following example shows that left π-morphic rings need not be left G-
morphic, and hence the notion of left π-morphic rings is a proper generalization of
left morphic.
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Example 2.10. Let R =
[

Z2 Z2

0 Z2

]
. Then R is left and right π-morphic but

neither left nor right G-morphic.

Proof. Clearly, every element of R is either nilpotent or idempotent or invertible, so

R is left and right π-morphic. But λ =
[

0 1
0 0

]
is neither left nor right G-morphic

in R. �

Lemma 2.11. Let R be a local ring with J(R) nil. Then R is left and right π-
morphic.

Proof. By hypothesis, every element of R is either nilpotent or invertible. So R is
left and right π-morphic. �

Next example shows that the left G-morphic condition can not be replaced by
left π-morphic in Theorem 2.9.

Example 2.12. Let R = Z4C2. Then R is a commutative, π-morphic ring but not
G-morphic.

Proof. By [11, Example 36], we know that R is a commutative, local and QF ring
but not morphic. This implies that J(R) is nilpotent, so R is π-morphic by Lemma
2.11. But from Theorem 2.9, we know that R is not G-morphic. �

Remark. Unfortunately, we can not find a ring R which is left G-morphic but not
left morphic. But we have an example which shows that left G-morphic elements
need not be left morphic.

Example 2.13. Let R = F [x, σ]/(x2) = {a + xb | a, b ∈ F}, where F is a field
with an isomorphism σ from F to a subfield F 6= F and cx = xσ(c) for all c ∈ F .
S = R ⊕ R, then λ = (1, xb) ∈ S (where b ∈ F but b 6∈ F ) is left G-morphic but
not left morphic.

Proof. By symmetry and [11, Example 8], xb is not left morphic in R, but λ2 = (1, 0)
is left morphic in S. It is trivial to see that λ is left G-morphic but not left morphic
in S. �

Now we give an example to show that “ left G-morphic ” is not a Morita
invariant property.

Example 2.14. Let R be the ring in Example 2.13 and S = M2(R). Then R is a
right morphic, left π-morphic ring and S is a right π-morphic ring, but R is not a
left G-morphic ring and S is not a right G-morphic ring.

Proof. By [11, Example 11] and Example 2.13, we know that R is a local, right
morphic ring but not left morphic, and J(R) is nilpotent. Hence R is left π-morphic
by Lemma 2.11. xb (b ∈ F but b 6∈ F ) is not left G-morphic because (xb)2 = 0 and
xb is not left morphic.

For any λ =
[

a11 + xb11 a12 + xb12

a21 + xb21 a22 + xb22

]
, where aij , bij ∈ F for i = 1, 2 and j =
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1, 2. If a11 = a12 = a21 = a22 = 0 then λ2 = 0, whence λ is right π-morphic. If there

exists aij 6= 0, then there exist µ1, µ2 ∈ U(S) such that µ1λµ2 =
[

r1 0
0 r2

]
∈ S,

r1, r2 ∈ R. Following from [11, Lemma 3] and the fact that
[

r1 0
0 r2

]
is right

morphic, λ is right morphic. Therefore, S is a right π-morphic ring.
By [4, Example 6], S is not left GP-injective. From Lemma 2.8, S is not right

G-morphic. �

3. Corner Rings and Kasch Condition

We are going to prove that if R is left π-morphic, then the same is true for the
corner ring eRe, in which e2 = e ∈ R.

Lemma 3.1. Let R be a left π-morphic ring. Then so is eRe for any idempotent
e of R.

Proof. We need only to show that for any a ∈ eRe, it is left π-morphic in eRe. Set
f = 1−e, then (a+x)n = an +xn for any a ∈ eRe, x ∈ fRf and n ≥ 1. Since a+f
is left π-morphic in R, there exist c ∈ R and n > 0 such that lR((a + f)n) = Rc
and lR(c) = R(a + f)n, so lR(an + f) = Rc and lR(c) = R(an + f). Hence
0 = (an +f)c = anc+fc, 0 = fanc+fc = fc and ec = c. Similarly ce = c, c ∈ eRe.
Let b ∈ leRe(an). Then b ∈ eRe∩Rc = (eRe)c. Conversely, let b ∈ (eRe)c. Clearly,
b ∈ lR(an + f), and hence b ∈ leRe(an). This implies that leRe(an) = (eRe)c. Thus
(eRe)an ⊆ leRe(c) because (eRe)an ⊆ R(an + f) = lR(c). If b ∈ leRe(c), then
b ∈ lR(c) = R(an +f), and so b = ebe ∈ (eRe)an. It follows that leRe(c) = (eRe)an,
hence a is left π-mophic in eRe. This completes the proof. �

Recall that in [14], R is called a left GC2-ring if for any left ideal I with I ∼= R,
I is a summand of RR. Equivalently, for any element a in R, if l(a) = 0 then Ra is
a summand of RR by [14, Proposition 2.2].

Theorem 3.2. Let R be a left Noetherian ring with M4(R) left G-morphic. Then
R is QF.

Proof. Since M4(R) is left G-morphic, M4(R) is right GP-injective by Lemma 2.8.
Hence M2(R) is right P-injective by [4, Lemma 3], and so R is right 2-injective.
Following from Lemma 3.1, R is left π-morphic. Therefore, by Proposition 2.3,
l(a) = 0 for any a ∈ R if and only if Ra = R. This implies that R is left GC2, and
so that R is semilocal by [14, Corollary 2.5]. From [6, Theorem 2.7], we have J(R)
nilpotent. Hence R is semiprimary, it follows that R is left Artinian. So R is QF
by [13, Corollary 3]. �

Similar to the proof of above theorem, we have the following theorem.

Theorem 3.3. Let R be a left Noetherian ring with M2(R) left morphic. Then R
is QF.
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Remark. The assumption that M2(R) can not be replaced by R in Theorem 3.3.
In fact, the ring R in [11, Example 8] is left Artinian and left morphic but not QF.

Recall that, a Morita context is a four-tuple (R, V, W, S) in which V = RVS

and W = SWR are bimodules and there exist multiplications V × W → R and

W × V → S such that C =
[

R V
W S

]
is an associated ring with the usual matrix

operations (called the context ring).

Proposition 3.4. Let C =
[

R V
W S

]
be a left G-morphic context ring. If either

V W ⊆ J(R) or WV ⊆ J(S), then V = 0 and W = 0.

Proof. Since C is a left π morphic ring, 0 6=
[

0 0
0 1

]2

=
[

0 0
0 1

]
∈ C and

S ∼=
[

0 0
0 1

] [
R V
W S

] [
0 0
0 1

]
, S is left π-morphic by Lemma 3.1. So S is

directly finite by Corollary 2.4. Assume that WV ∈ J(S), the argument is similar

if V W ∈ J(R). Let v ∈ V , and write λ =
[

0 v
0 0

]
∈ C. Then λ2 = 0, it follows

that λ is left morphic because C is left G-morphic. Therefore, following from the
proof of [11, Proposition 18], we have V = 0 and W = 0. �

Remark. The G-morphic condition can not be replaced by π-morphic condition

in Proposition 3.4. In Example 2.10, R =
[

Z2 Z2

0 Z2

]
is a left π-morphic context

ring but Z2 6= 0.

A ring R is said to be left Kasch if every simple left R-module embeds in RR,
equivalently, if r(I) 6= 0 for every proper (maximal) left ideal I of R.

Proposition 3.5. The following conditions are equivalent for a left G-morphic ring
R:
(1) R is left Kasch.
(2) Every maximal left ideal of R is an annihilator.
(3) Every maximal left ideal of R is principal.

Proof. (2) can be deduced by (1) without the left G-morphic condition.
(2) ⇒ (3) Let I be a maximal left ideal of R. Then there exists a nonzero right

ideal A such that I = l(A). Since R is left G-morphic, for any 0 6= a ∈ A, there exists
n > 0 such that an 6= 0 is left morphic. Hence l(an) 6= R, and so I ⊆ l(an) 6= R.
Therefore, I = l(an). It follows that I is principal.

(3) ⇒ (1) Let I = Ra be a maximal left ideal of R. As R is left G-morphic, there
exist n > 0, b ∈ R with an 6= 0 such that Ran = l(b). Since Ran ⊆ Ra = I 6= R,
b 6= 0. But anb = 0, a(an−1b) = 0. If an−1b 6= 0, then 0 6= an−1b ∈ r(Ra) = r(I),
otherwise, by induction, we have r(I) 6= 0 because b 6= 0. So R is left Kasch. �

Proposition 3.6. Let R be a left π-morphic ring and every maximal right ideal be
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principal. Then R is right Kasch.

Proof. Given any maximal right ideal I of R, there exists a ∈ R such that I = aR.
Since R is left π-morphic, a 6∈ U(R) and so Ra 6= R by Proposition 2.3. Hence,
we can choose 0 6= b ∈ R, n > 0 such that R 6= Ran = l(b) and l(an) = Rb, so
l(an) = Rb 6= 0. Therefore, l(I) = l(a) 6= 0, this implies that R is right Kasch. �

4. Singular ideals and trivial extensions

In this section, we study some properties about singular ideals and trivial ex-
tensions of rings under left π-morphic or left G-morphic condition.

Theorem 4.1. Let R be a left π-morphic ring. Then the following conditions hold.
(1) If r(a) = 0 then a ∈ U(R).
(2) Z(RR) ⊆ J(R) and Z(RR) ⊆ J(R).
(3) If RR is uniform then R is local and J(R) = Z(RR) = {a ∈ R | a 6∈ U(R)}.
(4) If RR is uniform then R is local and J(R) = Z(RR) = {a ∈ R | a 6∈ U(R)}.
But the converses of (3) and (4) are false.

Proof. (1) Since r(a) = 0, r(an) = 0 for any n ≥ 1. By Lemma 2.7, R is right
π-P-injective. Thus there exists n > 0 such that Ran = lr(an) = l(0) = R, which
implies that Ra = R. Therefore, a ∈ U(R) by Proposition 2.2.

(2) For any a ∈ Z(RR) and r ∈ R, ar ∈ Z(RR). Thus l(ar) ⊆ess
RR, l(ar) ∩

l(1− ar) = 0, and so that l(1− ar) = 0. Again by Proposition 2.3, 1− ar ∈ U(R),
so a ∈ J(R). Therefore, Z(RR) ⊆ J(R). Similarly, for any a ∈ Z(RR) and r ∈ R,
r(1− ra) = 0. Hence 1− ra ∈ U(R) and so a ∈ J(R). Therefore, Z(RR) ⊆ J(R).

(3) Assume that RR is uniform. Let a 6∈ U(R). l(a) 6= 0 by Proposi-
tion 2.3, it follows that l(a) ⊆ess

RR, and so a ∈ Z(RR). Conversely, if a ∈
Z(RR), l(a) ⊆ess

RR, then a 6∈ U(R). This shows that Z(RR) = {a ∈ R|a 6∈ U(R)}.
Given a ∈ J(R), then a 6∈ U(R), and so a ∈ Z(RR). Hence J(R) ⊆ Z(RR). There-
fore, by (2), R is a local ring with J(R) = Z(RR) = {a ∈ R|a 6∈ U(R)}.

(4) Assume that RR is uniform. If there exists a proper left ideal I such that
Z(RR) ⊂ I, then for any element a which is in I but not in Z(RR), we have r(a) = 0,
it follows that a ∈ U(R) by (1). It is impossible. Therefore, Z(RR) is the unique
maximal left ideal, whence R is a local ring and Z(RR) = J(R) = {a ∈ R|a 6∈
U(R)}.

In Example 2.13, R is a left and right π-morphic, local ring with Z(RR) =
J(R) = Z(RR) = {a ∈ R|a 6∈ U(R)} but RR is not uniform. By symmetry, the last
part holds. �

Corollary 4.2. Let R be a ring with RR (or RR) uniform and R/Soc(RR) (or
R/Soc(RR)) having ACC on left (or right) annihilators. Then the following condi-
tions are equivalent:
(1) R is a local ring with J(R) nilpotent.
(2) R is a local ring with J(R) nil.
(3) R is a unit π-regular ring.
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(4) R is a left π-morphic ring.
(5) R is a right π-morphic ring.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) and (3) ⇒ (5) are obvious.
(4) or (5) ⇒ (1). Given R is left (or right) π-morphic and RR (or RR) is

uniform. Then J(R) = Z(RR) (or J(R) = Z(RR)) and R is local by Proposition
4.1. Since R/Soc(RR) (or R/Soc(RR)) has ACC on left (or right) annihilators,
Z(RR) (or Z(RR)) is nilpotent by [12, Lemma 4.20]. Therefore, J(R) is nilpotent.
�

For a ring R, the trivial extension R ∝ R = {(a, b)|a, b ∈ R} is a ring
with addition defined componentwise and multiplication defined by (a, b)(c, d) =
(ac, ad + bc).

Proposition 4.3. Let S = R ∝ R and a ∈ R. Then the following conditions are
equivalent:
(1) a ∈ R is left π-morphic in R.
(2) (a, 0) ∈ R ∝ R is left π-morphic in S.
(3) (a, a) ∈ R ∝ R is left π-morphic in S.

Proof. (1) ⇒ (2) Since a ∈ R is left π-morphic in R, there exists n > 0 such that an

is left morphic, so (an, 0) = (a, 0)n ∈ S is left morphic by [3, Theorem 19]. Hence
(a, 0) is left π-morphic in S.

(2) ⇒ (1) Assume that (a, 0) is left π-morphic. There exists n > 0 such that
(a, 0)n = (an, 0) ∈ S is left morphic, so an is left morphic in R again by [3,
Theorem 19]. Therefore, a is left π-morphic in R.

(2) ⇔ (3) For any n > 0, (a, a)n = (an, nan) and (an, nan)(1, −n) = (an, 0).
(a, 0) is left π-morphic if and only if there exists n > 0 such that (an, 0) is left
morphic if and only if (an, nan) = (a, a)n is left morphic (by [11, Lemma 3]) if
and only if (a, a) is left π-morphic. We have done. �

Note that if replace left π-morphic condition by left G-morphic, Proposition 4.3
is also right.

Proposition 4.4. Let S = R ∝ R. Then the following conditions hold.
(1) If S is a left π-morphic ring, then so is R.
(2) If S is a left G-morphic ring, then R is left morphic.

Proof. (1) By Proposition 4.3.
(2) For any a ∈ R, (0, a) ∈ S is left morphic in S because that (0, a)2 = 0.

Therefore, a is left morphic in R by [3, Proposition 20]. Thus the result follows. �

During we consider the question when R ∝ R is left π(resp. G)-morphic, we
have the following example.

Example 4.5. Let p be any prime number and k be any positive integer. Then
S = Zpk ∝ Zpk is a π-morphic ring. And it is G-morphic if and only if k = 1.
Proof. It is trivial to see that S is a commutative, local and Artinian ring. So it is
π-morphic by Lemma 2.11, and if it is G-morphic, then it is morphic by Theorem
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2.9. From [3, Theorem 8], S is morphic if and only if k = 1. �
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