KYUNGPOOK Math. J. 47(2007), 363-372

π -Morphic Rings

QINGHE HUANG

Department of Mathematics, Southeast University, Nanjing 210096, P. R. China e-mail: qinghhuang@yahoo.com.cn

JIANLONG CHEN

Department of Mathematics, Southeast University, Nanjing 210096, P. R. China e-mail: jlchen@seu.edu.cn

ABSTRACT. An element a in a ring R is called left morphic if $R/Ra \cong l(a)$. A ring R is called left morphic if every element is left morphic. In this paper, an element a in a ring R is called left π -morphic (resp. left G-morphic) if there exists a positive number n such that a^n (resp. $a^n \neq 0$) is left morphic. A ring R is called left π -morphic (resp. left G-morphic) if every element is left π -morphic (resp. left G-morphic). The Morita invariance of left π -morphic (resp. left G-morphic) rings is discussed. Several relevant properties are proved. In particular, it is shown that a left Noetherian ring R with $M_4(R)$ left G-morphic or $M_2(R)$ left morphic is QF. Some known results of left morphic rings are extended to left G-morphic rings and left π -morphic rings.

1. Introduction

Throughout the paper, all rings are associative with identity and all modules are unitary. Let R be a ring. The right (resp. left) annihilator of a subset Xof R is denoted by $\mathbf{r}(X)$ (resp. $\mathbf{l}(X)$). The Jacobson radical, left singular ideal, right singular ideal, left socle and the right socle of R are denoted by J(R), Z(RR), $Z(R_R)$, $Soc(_RR)$ and $Soc(R_R)$, respectively. Using $I \subseteq {}^{ess}_R R$ to show that I is an essential left ideal of R. And we write U(R) for the group of all units of R.

By the well known theorem of Erlich [5], a map α in the endomorphism ring of a module M is unit regular if and only if it is regular and $M/\text{Im}(\alpha) \cong \text{Ker}(\alpha)$. In [11], Nicholson and Sánchez Campós introduced and studied left morphic rings (which were further studied in [3, 9, 10]). An element a in a ring R is said to be left morphic if $R/Ra \cong \mathbf{l}(a)$, equivalently, there exists $b \in R$ such that $\mathbf{l}(a) = Rb$ and $\mathbf{l}(b) = Ra$. A ring R is called left morphic if every element is left morphic. Right morphic rings are defined analogously.

In this paper, the notion of left morphic rings is extended to left π -morphic (resp.

Received April 10, 2006, and, in revised form, November 30, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 16E50, 16U99, 16S70.

Key words and phrases: morphic ring, π -morphic ring, G-morphic ring, QF ring.

This work was supported by the National Natural Science Foundation of China (No.10571026) and the Natural Science Foundation of Jiangsu Province (No.BK2005207).

³⁶³

left G-morphic) rings. An element a in a ring R is called left π -morphic (resp. left G-morphic) if there exists n > 0 such that a^n (resp. $a^n \neq 0$) is left morphic. The ring itself is called left π -morphic (resp. left G-morphic) if every element is left π morphic (resp. left G-morphic). Right π -morphic (resp. right G-morphic) rings are defined analogously. A ring R is called morphic if it is left and right morphic. The π -morphic (resp. G-morphic) rings are defined similarly. Some examples show that left π -morphic rings need not be left morphic. Some known results of left morphic rings are extended to left π -morphic (resp. left G-morphic) rings. The Morita invariance of these notions is discussed. Several relevant properties are proved. In particular, it is shown that a left Noetherian ring R with $M_4(R)$ left G-morphic or $M_2(R)$ left morphic is QF. Left π -morphic (resp. left G-morphic) rings are directly finite. If R is left π -morphic, then the same is true of the corner ring eRe for any idempotent $e \in R$. Furthermore, it is shown that if R is a local and left G-morphic ring, then the following conditions are equivalent: (1) J(R) is nilpotent; (2) J(R)is nil and $Soc(_RR) \neq 0$; (3) R has ACC on principal left ideals and $Soc(_RR) \neq 0$. In this case, R is left morphic.

2. Examples

We start this section with the following.

Definition 2.1. Let R be a ring. An element a in R is called left π -morphic if there exists n > 0 such that $R/Ra^n \cong \mathbf{l}(a^n)$. The ring itself is said to be left π -morphic if every element is left π -morphic.

Lemma 2.2. Let R be a ring. An element a in R is left π -morphic if and only if there exist n > 0 and $b \in R$ such that $\mathbf{l}(a^n) = Rb$ and $\mathbf{l}(b) = Ra^n$.

Proof. By Definition 2.1 and [11, Lemma 1].

Proposition 2.3. Let R be a ring, and let a in R be left π -morphic. Then the following conditions are equivalent:

(1) $\mathbf{l}(a) = 0.$

(2) Ra = R.

 $(3) \ a \in U(R).$

Proof. By Lemma 2.2, there exist n > 0 and $b \in R$ such that $Ra^n = \mathbf{l}(b)$, $Rb = \mathbf{l}(a^n)$. (1) \Rightarrow (2) If $\mathbf{l}(a) = 0$, then it is easy to see that $\mathbf{l}(a^n) = 0$. Hence b = 0, $Ra^n = \mathbf{l}(0) = R$, and so Ra = R.

(2) \Rightarrow (3) If Ra = R, there exists $r \in R$ such that ra = 1, so $r^n a^n = 1$ and hence $Ra^n = R$. Thus b = 0, and $\mathbf{l}(a) \subseteq \mathbf{l}(a^n) = 0$. And $ar - 1 \in \mathbf{l}(a)$, ar = 1. We are done.

 $(3) \Rightarrow (1)$ is clear.

A ring R is called directly finite if ab = 1 implies ba = 1 for any $a, b \in R$. R is said to be stably finite if $M_n(R)$ is directly finite for all n > 0.

Corollary 2.4. Let R be a left π -morphic ring. Then it is directly finite.

Recall that a ring R is called unit π -regular [1], if for any $a \in R$, there exists n > 0 such that a^n is unit regular.

Lemma 2.5. Let R be a regular ring. Then it is left π -morphic if and only if it is unit π -regular.

Proof. Since R is a regular ring, a^n is unit regular if and only if a^n is left morphic for any $a \in R$ and n > 0 (by [11, Example 4] and [11, Proposition 5]). The result follows.

Lemma 2.6. Let R be a unit π -regular ring. Then S = R/I is a unit π -regular ring for any ideal I of R.

Proof. For any $a \in R$, there exist n > 0 and $u \in U(R)$ such that $a^n = a^n u a^n$. So $(a+I)^n = a^n + I = a^n u a^n + I = (a^n + I)(u+I)(a^n + I)$. This means that S = R/I is a unit π -regular ring.

Now, an example is given to show that the converse of Corollary 2.3 is false, even if R is regular and stably finite.

Example 2.7 [7]. Choose a field F, let T = F[[t]] be the ring of formal power series over F in an indeterminate t, and let K denote the quotient field of T. Let $S = \{x \in End_F(T) | (x - a)(t^n T) = 0, \text{ for some } a \in K \text{ and } n > 0\}$. By [7, Example 4.26], for each $x \in S$ there is an unique element $\varphi x \in K$ such that $(x - \varphi x)(t^n T) = 0$ for some n > 0. Since K is commutative, the map $\varphi : S \to K$ also defines a ring map $\varphi : S^{op} \to K$, where S^{op} denotes the opposite ring of S. Consequently, the set $R = \{(x, y) \in S \times S^{op} | \varphi x = \varphi y\}$ is a subring of $S \times S^{op}$. Inasmuch R is a subdirect product of S and S^{op} , then R is regular, stably finite but not left π -morphic.

Proof. From [7, Example 5.10], we know that R is a regular and stably finite ring. Assume that R is left π -morphic, by Lemma 2.5, R is unit π -regular. In fact, as an element of $End_F(T)$, t^n is injective but not surjective. If there exists $u \in S$ such that $t^n ut^n = t^n$, then $ut^n = 1$, and so $t^n = u^{-1}$, a contradiction. Hence, S is not unit π -regular. By Lemma 2.6, we conclude that R is not left π -morphic. \Box

Recall that R is called right π -P-injective if there exists n > 0 such that $Ra^n = \mathbf{lr}(a^n)$, which is also called right GP-injective in [15]. But in this paper, we call R a right GP-injective ring [2], if for any $0 \neq a \in R$, there exists n > 0 with $a^n \neq 0$ such that $Ra^n = \mathbf{lr}(a^n)$. An element a in R is said to be left G-morphic if there exists n > 0 with $a^n \neq 0$ such that a^n is left morphic, equivalently, there exist n > 0 with $a^n \neq 0$ with $a^n \neq 0$ and $b \in R$ such that $\mathbf{l}(a^n) = Rb$ and $\mathbf{l}(b) = Ra^n$. The ring itself is called left G-morphic if every element is left G-morphic.

Lemma 2.8. Let R be a left π -morphic (resp. left G-morphic) ring. Then it is right π -P-injective (resp. right GP-injective).

Proof. If R is a left G-morphic ring, then for any a in R, there exist a positive number n with $a^n \neq 0$ and $b \in R$ such that $Ra^n = \mathbf{l}(b)$ and $\mathbf{l}(a^n) = Rb$. So

 $\mathbf{lr}(a^n) = \mathbf{lr}(Ra^n) = \mathbf{lrl}(b) = \mathbf{l}(b) = Ra^n$, equivalently, R is right GP-injective. Similarly, if R is a left π -morphic ring, then it is right π -P-injective.

Theorem 2.9. Let R be a local and left G-morphic ring. Then the following conditions are equivalent:

(1) J(R) is nilpotent.

(2) J(R) is nil and $Soc(_RR) \neq 0$.

(3) R has ACC on principal left ideal and $Soc(_RR) \neq 0$.

In this case, R is left morphic.

Proof. (1) \Rightarrow (2) and (3). If J(R) is nilpotent, then it is clear that J(R) is nil and R is left perfect. Hence R has ACC on principal left ideals (by Jonah's Theorem [8]), and $Soc(R_R) \subseteq ^{ess} R_R$. Moreover, by Lemma 2.8, R is right GP-injective. So $Soc(R_R) \subseteq Soc(_RR)$ by [2, Lemma 2.2], and hence $Soc(_RR) \neq 0$.

 $(2) \Rightarrow (1)$. By hypothesis, there exists a nonzero minimal left ideal Ra of R. Since R is left G-morphic, there exist n > 0 with $a^n \neq 0$ and $c \in R$ such that $Ra^n = \mathbf{l}(c)$ and $Rc = \mathbf{l}(a^n)$. Hence $R/Rc = R/\mathbf{l}(a^n) \cong Ra^n = Ra$, Rc is a maximal left ideal of R and so J(R) = Rc.

Assume that $J(R)^k = Rc^k$ for some positive number $k \ge 1$. $J(R)^{k+1} = J(R) \cdot Rc^k = J(R) \cdot c^k = Rc \cdot c^k = Rc^{k+1}$. By induction, $J(R)^k = Rc^k$ for every $k \ge 1$. Since J(R) is nil, there exists k > 0 such that $c^k = 0$ and so $J(R)^k = Rc^k = 0$.

 $(3) \Rightarrow (1)$. By the proof of $(2) \Rightarrow (1)$, J(R) = Rc. If c is nilpotent, then J(R) is nilpotent. If c is not nilpotent, there exist positive numbers $n_0 > 0$ and $n_1 > 0$ such that $0 \neq c^{n_0}$ and $0 \neq c^{2n_0n_1}$ are left morphic. By induction, there exists $\{c^{2^in_0n_1\cdots n_i}\}_{i=0}^{\infty}$ such that $0 \neq c^{2^in_0n_1\cdots n_i}$ is left morphic for any $i \ge 0$, and denotes $2^in_0n_1\cdots n_i$ by t_i . Then $\mathbf{l}(c^{t_i}) \subseteq \mathbf{l}(c^{t_{i+1}})$ dues to $t_i < t_{i+1}$. Because R has ACC on principal left ideals, there exists n > 0 such that $\mathbf{l}(c^{t_0}) \subseteq \mathbf{l}(c^{t_1}) \subseteq \cdots \subseteq \mathbf{l}(c^{t_n}) = \mathbf{l}(c^{t_{n+1}})$. We can choose $a, b \in R$ such that $Ra = \mathbf{l}(c^{t_n})$, $\mathbf{l}(a) = Rc^{t_n} = J(R)^{t_n}$ and $Rb = \mathbf{l}(c^{t_{n+1}})$, $\mathbf{l}(b) = Rc^{t_{n+1}} = J(R)^{t_{n+1}}$. Then Ra = Rb, there exist $u, v \in R$ such that a = ub and b = va. Thus a = uva, (1 - uv)a = 0. $uv \notin J(R)$ because $a \neq 0$. This implies $uv \in U(R)$ (as R is a local ring) and so $u \in U(R)$ by Proposition 2.3. But $0 = c^{t_n}a = c^{t_n}ub$, $c^{t_n}u \in \mathbf{l}(b) = Rc^{t_{n+1}} = J(R)^{t_{n+1}}$, it follows that $c^{t_n} \in J(R)^{t_{n+1}} = Rc^{t_{n+1}}$. Let $c^{t_n} = rc^{t_{n+1}}$, $r \in R$, it implies that $(1 - rc^{t_{n+1}-t_n})c^{t_n} = 0$. Thus $rc^{t_{n+1}-t_n} \notin J(R)$ because $c^{t_n} \neq 0$, a contradiction. Hence c is nilpotent and so J(R) is nilpotent.

Now, we show the last part. Suppose that $J(R)^n = 0$ for some n > 0. If n = 1, then R is division and so it is left morphic. If n > 1, we can assume that $J(R)^{n-1} \neq 0$. Let $0 \neq b \in J(R)^{n-1}$, there exists $m \ge 1$ such that $b^m \neq 0$ is left morphic. Moreover, for any $0 \neq a \in J(R)^{n-1}$, $a^2 = 0$, so m = 1. Thus b is left morphic, there exists $c \in R$ such that $\mathbf{l}(b) = Rc$ and $J(R) \subseteq \mathbf{l}(b) = Rc \neq R$. Hence J(R) = Rc and $c^n = 0$. Therefore, by [11, Theorem 9], R is a left morphic ring. \Box

The following example shows that left π -morphic rings need not be left G-morphic, and hence the notion of left π -morphic rings is a proper generalization of left morphic.

Example 2.10. Let $R = \begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{bmatrix}$. Then R is left and right π -morphic but neither left nor right G-morphic.

Proof. Clearly, every element of R is either nilpotent or idempotent or invertible, so R is left and right π -morphic. But $\lambda = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is neither left nor right G-morphic in R.

Lemma 2.11. Let R be a local ring with J(R) nil. Then R is left and right π -morphic.

Proof. By hypothesis, every element of R is either nilpotent or invertible. So R is left and right π -morphic.

Next example shows that the left G-morphic condition can not be replaced by left π -morphic in Theorem 2.9.

Example 2.12. Let $R = \mathbb{Z}_4 C_2$. Then R is a commutative, π -morphic ring but not G-morphic.

Proof. By [11, Example 36], we know that R is a commutative, local and QF ring but not morphic. This implies that J(R) is nilpotent, so R is π -morphic by Lemma 2.11. But from Theorem 2.9, we know that R is not G-morphic.

Remark. Unfortunately, we can not find a ring R which is left G-morphic but not left morphic. But we have an example which shows that left G-morphic elements need not be left morphic.

Example 2.13. Let $R = F[x, \sigma]/(x^2) = \{a + xb \mid a, b \in F\}$, where F is a field with an isomorphism σ from F to a subfield $\overline{F} \neq F$ and $cx = x\sigma(c)$ for all $c \in F$. $S = R \oplus R$, then $\lambda = (1, xb) \in S$ (where $b \in F$ but $b \notin \overline{F}$) is left G-morphic but not left morphic.

Proof. By symmetry and [11, Example 8], xb is not left morphic in R, but $\lambda^2 = (1, 0)$ is left morphic in S. It is trivial to see that λ is left G-morphic but not left morphic in S.

Now we give an example to show that " left G-morphic " is not a Morita invariant property.

Example 2.14. Let R be the ring in Example 2.13 and $S = M_2(R)$. Then R is a right morphic, left π -morphic ring and S is a right π -morphic ring, but R is not a left G-morphic ring and S is not a right G-morphic ring.

Proof. By [11, Example 11] and Example 2.13, we know that R is a local, right morphic ring but not left morphic, and J(R) is nilpotent. Hence R is left π -morphic by Lemma 2.11. xb ($b \in F$ but $b \notin \overline{F}$) is not left G-morphic because $(xb)^2 = 0$ and xb is not left morphic.

For any $\lambda = \begin{bmatrix} a_{11} + xb_{11} & a_{12} + xb_{12} \\ a_{21} + xb_{21} & a_{22} + xb_{22} \end{bmatrix}$, where $a_{ij}, b_{ij} \in F$ for i = 1, 2 and j = 1, 2

1, 2. If $a_{11} = a_{12} = a_{21} = a_{22} = 0$ then $\lambda^2 = 0$, whence λ is right π -morphic. If there exists $a_{ij} \neq 0$, then there exist μ_1 , $\mu_2 \in U(S)$ such that $\mu_1 \lambda \mu_2 = \begin{bmatrix} r_1 & 0 \\ 0 & r_2 \end{bmatrix} \in S$, $r_1, r_2 \in R$. Following from [11, Lemma 3] and the fact that $\begin{bmatrix} r_1 & 0 \\ 0 & r_2 \end{bmatrix}$ is right morphic, λ is right morphic. Therefore, S is a right π -morphic ring.

By [4, Example 6], S is not left GP-injective. From Lemma 2.8, S is not right G-morphic. $\hfill \Box$

3. Corner Rings and Kasch Condition

We are going to prove that if R is left π -morphic, then the same is true for the corner ring eRe, in which $e^2 = e \in R$.

Lemma 3.1. Let R be a left π -morphic ring. Then so is eRe for any idempotent e of R.

Proof. We need only to show that for any $a \in eRe$, it is left π -morphic in eRe. Set f = 1-e, then $(a+x)^n = a^n + x^n$ for any $a \in eRe$, $x \in fRf$ and $n \ge 1$. Since a+f is left π -morphic in R, there exist $c \in R$ and n > 0 such that $\mathbf{l}_R((a+f)^n) = Rc$ and $\mathbf{l}_R(c) = R(a+f)^n$, so $\mathbf{l}_R(a^n+f) = Rc$ and $\mathbf{l}_R(c) = R(a^n+f)$. Hence $0 = (a^n+f)c = a^nc+fc, 0 = fa^nc+fc = fc$ and ec = c. Similarly $ce = c, c \in eRe$. Let $b \in \mathbf{l}_{eRe}(a^n)$. Then $b \in eRe \cap Rc = (eRe)c$. Conversely, let $b \in (eRe)c$. Clearly, $b \in \mathbf{l}_R(a^n+f)$, and hence $b \in \mathbf{l}_{eRe}(a^n)$. This implies that $\mathbf{l}_{eRe}(a^n) = (eRe)c$. Thus $(eRe)a^n \subseteq \mathbf{l}_{eRe}(c)$ because $(eRe)a^n \subseteq R(a^n+f) = \mathbf{l}_R(c)$. If $b \in \mathbf{l}_{eRe}(c)$, then $b \in \mathbf{l}_R(c) = R(a^n+f)$, and so $b = ebe \in (eRe)a^n$. It follows that $\mathbf{l}_{eRe}(c) = (eRe)a^n$, hence a is left π -mophic in eRe. This completes the proof.

Recall that in [14], R is called a left GC2-ring if for any left ideal I with $I \cong R$, I is a summand of $_RR$. Equivalently, for any element a in R, if $\mathbf{l}(a) = 0$ then Ra is a summand of $_RR$ by [14, Proposition 2.2].

Theorem 3.2. Let R be a left Noetherian ring with $M_4(R)$ left G-morphic. Then R is QF.

Proof. Since $M_4(R)$ is left G-morphic, $M_4(R)$ is right GP-injective by Lemma 2.8. Hence $M_2(R)$ is right P-injective by [4, Lemma 3], and so R is right 2-injective. Following from Lemma 3.1, R is left π -morphic. Therefore, by Proposition 2.3, I(a) = 0 for any $a \in R$ if and only if Ra = R. This implies that R is left GC2, and so that R is semilocal by [14, Corollary 2.5]. From [6, Theorem 2.7], we have J(R)nilpotent. Hence R is semiprimary, it follows that R is left Artinian. So R is QF by [13, Corollary 3].

Similar to the proof of above theorem, we have the following theorem.

Theorem 3.3. Let R be a left Noetherian ring with $M_2(R)$ left morphic. Then R is QF.

Remark. The assumption that $M_2(R)$ can not be replaced by R in Theorem 3.3. In fact, the ring R in [11, Example 8] is left Artinian and left morphic but not QF.

Recall that, a Morita context is a four-tuple (R, V, W, S) in which $V = {}_{R}V_{S}$ and $W = {}_{S}W_{R}$ are bimodules and there exist multiplications $V \times W \to R$ and $W \times V \to S$ such that $C = \begin{bmatrix} R & V \\ W & S \end{bmatrix}$ is an associated ring with the usual matrix operations (called the context ring).

Proposition 3.4. Let $C = \begin{bmatrix} R & V \\ W & S \end{bmatrix}$ be a left *G*-morphic context ring. If either $VW \subseteq J(R)$ or $WV \subseteq J(S)$, then V = 0 and W = 0.

Proof. Since C is a left π morphic ring, $0 \neq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in C$ and $S \cong \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R & V \\ W & S \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, S is left π -morphic by Lemma 3.1. So S is directly finite by Corollary 2.4. Assume that $WV \in J(S)$, the argument is similar if $VW \in J(R)$. Let $v \in V$, and write $\lambda = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix} \in C$. Then $\lambda^2 = 0$, it follows that λ is left morphic because C is left G-morphic. Therefore, following from the proof of [11, Proposition 18], we have V = 0 and W = 0.

Remark. The G-morphic condition can not be replaced by π -morphic condition in Proposition 3.4. In Example 2.10, $R = \begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{bmatrix}$ is a left π -morphic context ring but $\mathbb{Z}_2 \neq 0$.

A ring R is said to be left Kasch if every simple left R-module embeds in $_RR$, equivalently, if $\mathbf{r}(I) \neq 0$ for every proper (maximal) left ideal I of R.

Proposition 3.5. The following conditions are equivalent for a left G-morphic ring R:

(1) R is left Kasch.

(2) Every maximal left ideal of R is an annihilator.

(3) Every maximal left ideal of R is principal.

Proof. (2) can be deduced by (1) without the left G-morphic condition.

 $(2) \Rightarrow (3)$ Let I be a maximal left ideal of R. Then there exists a nonzero right ideal A such that $I = \mathbf{l}(A)$. Since R is left G-morphic, for any $0 \neq a \in A$, there exists n > 0 such that $a^n \neq 0$ is left morphic. Hence $\mathbf{l}(a^n) \neq R$, and so $I \subseteq \mathbf{l}(a^n) \neq R$. Therefore, $I = \mathbf{l}(a^n)$. It follows that I is principal.

(3) \Rightarrow (1) Let I = Ra be a maximal left ideal of R. As R is left G-morphic, there exist n > 0, $b \in R$ with $a^n \neq 0$ such that $Ra^n = \mathbf{l}(b)$. Since $Ra^n \subseteq Ra = I \neq R$, $b \neq 0$. But $a^nb = 0$, $a(a^{n-1}b) = 0$. If $a^{n-1}b \neq 0$, then $0 \neq a^{n-1}b \in \mathbf{r}(Ra) = \mathbf{r}(I)$, otherwise, by induction, we have $\mathbf{r}(I) \neq 0$ because $b \neq 0$. So R is left Kasch. \Box

Proposition 3.6. Let R be a left π -morphic ring and every maximal right ideal be

principal. Then R is right Kasch.

Proof. Given any maximal right ideal I of R, there exists $a \in R$ such that I = aR. Since R is left π -morphic, $a \notin U(R)$ and so $Ra \neq R$ by Proposition 2.3. Hence, we can choose $0 \neq b \in R$, n > 0 such that $R \neq Ra^n = \mathbf{l}(b)$ and $\mathbf{l}(a^n) = Rb$, so $\mathbf{l}(a^n) = Rb \neq 0$. Therefore, $\mathbf{l}(I) = \mathbf{l}(a) \neq 0$, this implies that R is right Kasch. \Box

4. Singular ideals and trivial extensions

In this section, we study some properties about singular ideals and trivial extensions of rings under left π -morphic or left G-morphic condition.

Theorem 4.1. Let R be a left π -morphic ring. Then the following conditions hold. (1) If $\mathbf{r}(a) = 0$ then $a \in U(R)$.

(2) $Z(_RR) \subseteq J(R)$ and $Z(R_R) \subseteq J(R)$.

(3) If $_{R}R$ is uniform then R is local and $J(R) = Z(_{R}R) = \{a \in R \mid a \notin U(R)\}.$

(4) If R_R is uniform then R is local and $J(R) = Z(R_R) = \{a \in R \mid a \notin U(R)\}.$

But the converses of (3) and (4) are false.

Proof. (1) Since $\mathbf{r}(a) = 0$, $\mathbf{r}(a^n) = 0$ for any $n \ge 1$. By Lemma 2.7, R is right π -P-injective. Thus there exists n > 0 such that $Ra^n = \mathbf{lr}(a^n) = \mathbf{l}(0) = R$, which implies that Ra = R. Therefore, $a \in U(R)$ by Proposition 2.2.

(2) For any $a \in Z(RR)$ and $r \in R$, $ar \in Z(RR)$. Thus $\mathbf{l}(ar) \subseteq^{ess} RR$, $\mathbf{l}(ar) \cap \mathbf{l}(1-ar) = 0$, and so that $\mathbf{l}(1-ar) = 0$. Again by Proposition 2.3, $1 - ar \in U(R)$, so $a \in J(R)$. Therefore, $Z(RR) \subseteq J(R)$. Similarly, for any $a \in Z(RR)$ and $r \in R$, $\mathbf{r}(1-ra) = 0$. Hence $1 - ra \in U(R)$ and so $a \in J(R)$. Therefore, $Z(RR) \subseteq J(R)$.

(3) Assume that $_RR$ is uniform. Let $a \notin U(R)$. $\mathbf{l}(a) \neq 0$ by Proposition 2.3, it follows that $\mathbf{l}(a) \subseteq^{ess}{}_RR$, and so $a \in Z(_RR)$. Conversely, if $a \in Z(_RR)$, $\mathbf{l}(a) \subseteq^{ess}{}_RR$, then $a \notin U(R)$. This shows that $Z(_RR) = \{a \in R | a \notin U(R)\}$. Given $a \in J(R)$, then $a \notin U(R)$, and so $a \in Z(_RR)$. Hence $J(R) \subseteq Z(_RR)$. Therefore, by (2), R is a local ring with $J(R) = Z(_RR) = \{a \in R | a \notin U(R)\}$.

(4) Assume that R_R is uniform. If there exists a proper left ideal I such that $Z(R_R) \subset I$, then for any element a which is in I but not in $Z(R_R)$, we have $\mathbf{r}(a) = 0$, it follows that $a \in U(R)$ by (1). It is impossible. Therefore, $Z(R_R)$ is the unique maximal left ideal, whence R is a local ring and $Z(R_R) = J(R) = \{a \in R | a \notin U(R)\}$.

In Example 2.13, R is a left and right π -morphic, local ring with $Z(R_R) = J(R) = Z(RR) = \{a \in R | a \notin U(R)\}$ but R_R is not uniform. By symmetry, the last part holds.

Corollary 4.2. Let R be a ring with $_RR$ (or R_R) uniform and $R/Soc(_RR)$ (or $R/Soc(R_R)$) having ACC on left (or right) annihilators. Then the following conditions are equivalent:

(1) R is a local ring with J(R) nilpotent.

(2) R is a local ring with J(R) nil.

(3) R is a unit π -regular ring.

(4) R is a left π -morphic ring.

(5) R is a right π -morphic ring.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ and $(3) \Rightarrow (5)$ are obvious.

(4) or (5) \Rightarrow (1). Given R is left (or right) π -morphic and $_RR$ (or R_R) is uniform. Then $J(R) = Z(_RR)$ (or $J(R) = Z(R_R)$) and R is local by Proposition 4.1. Since $R/Soc(_RR)$ (or $R/Soc(R_R)$) has ACC on left (or right) annihilators, $Z(_RR)$ (or $Z(R_R)$) is nilpotent by [12, Lemma 4.20]. Therefore, J(R) is nilpotent. \Box

For a ring R, the trivial extension $R \propto R = \{(a, b)|a, b \in R\}$ is a ring with addition defined componentwise and multiplication defined by (a, b)(c, d) = (ac, ad + bc).

Proposition 4.3. Let $S = R \propto R$ and $a \in R$. Then the following conditions are equivalent:

(1) $a \in R$ is left π -morphic in R.

(2) $(a, 0) \in R \propto R$ is left π -morphic in S.

(3) $(a, a) \in R \propto R$ is left π -morphic in S.

Proof. (1) \Rightarrow (2) Since $a \in R$ is left π -morphic in R, there exists n > 0 such that a^n is left morphic, so $(a^n, 0) = (a, 0)^n \in S$ is left morphic by [3, Theorem 19]. Hence (a, 0) is left π -morphic in S.

 $(2) \Rightarrow (1)$ Assume that (a, 0) is left π -morphic. There exists n > 0 such that $(a, 0)^n = (a^n, 0) \in S$ is left morphic, so a^n is left morphic in R again by [3, Theorem 19]. Therefore, a is left π -morphic in R.

(2) \Leftrightarrow (3) For any n > 0, $(a, a)^n = (a^n, na^n)$ and $(a^n, na^n)(1, -n) = (a^n, 0)$. (a, 0) is left π -morphic if and only if there exists n > 0 such that $(a^n, 0)$ is left morphic if and only if $(a^n, na^n) = (a, a)^n$ is left morphic (by [11, Lemma 3]) if and only if (a, a) is left π -morphic. We have done.

Note that if replace left π -morphic condition by left G-morphic, Proposition 4.3 is also right.

Proposition 4.4. Let $S = R \propto R$. Then the following conditions hold.

(1) If S is a left π -morphic ring, then so is R.

(2) If S is a left G-morphic ring, then R is left morphic.

Proof. (1) By Proposition 4.3.

(2) For any $a \in R$, $(0, a) \in S$ is left morphic in S because that $(0, a)^2 = 0$. Therefore, a is left morphic in R by [3, Proposition 20]. Thus the result follows. \Box

During we consider the question when $R \propto R$ is left π (resp. G)-morphic, we have the following example.

Example 4.5. Let p be any prime number and k be any positive integer. Then $S = \mathbb{Z}_{p^k} \propto \mathbb{Z}_{p^k}$ is a π -morphic ring. And it is G-morphic if and only if k = 1.

Proof. It is trivial to see that S is a commutative, local and Artinian ring. So it is π -morphic by Lemma 2.11, and if it is G-morphic, then it is morphic by Theorem

2.9. From [3, Theorem 8], S is morphic if and only if k = 1.

Acknowledgment. The authors are grateful to the referee for his helpful comments and suggestions.

References

- H. Y. Chen, Power-substitution, exchange rings and unit π-regularity, Comm. Algebra, 28(11)(2000), 5223-5233.
- [2] J. L. Chen and N. Q. Ding, On general principally injective rings, Comm. Algebra, 27(5)(1999), 2097-2116.
- [3] J. L. Chen and Y. Zhou, Morphic rings as trivial extentions, Glasgow Math. J., 47(2005), 139-148.
- [4] J. L. Chen, Y. Zhou and Z. M. Zhu, GP-injective rings need not be P-injective, Comm. Algebra, 33(7)(2005), 2395-2402.
- [5] G. Erlich, Unit and one-sided units in regular rings, Trans. Amer. Math. Soc., 216(1976), 81-90.
- [6] J. L. Gomez Pardo and P. A. Guil Asensio, Torsionless modules and rings with finite essential socle, Lecture Notes in Pure and Appl. Math., 201(1998), 261-278.
- [7] K. R. Goodearl, "Von Neumann Regular Rings", Second Edition. Krieger, Malabar, Florida, 1991.
- [8] D. Jonah, Rings with the minimum condition for principal right ideals have the maximal condition for principal left ideal, Math. Z., 113(1970), 106-112.
- [9] W. K. Nicholson and E. Sánchez Campós, Morphic modules, Comm. Algebra, 33(8)(2005), 2629-2647.
- [10] W. K. Nicholson and E. Sánchez Campós, Principal rings with the dual of the isomorphism theorem, Glasgow Math. J., 46(2004), 181-191.
- [11] W. K. Nicholson and E. Sánchez Campós, Rings with the dual of the isomorphism theorem, J. Algebra, 271(2004), 391-406.
- [12] W. K. Nichoson and M. F. Yousif, "Quasi-Frobenius Ring", Cambridge University Press, 2003.
- [13] E. A. Rutter, Rings with the principal extension property, Comm. Algebra, 3(2)(1975), 203-212.
- [14] M. F. Yousif and Y. Zhou, Rings for which certain elements have the principal extensions property, Algebra Colloq., 10(4)(2003), 501-512.
- [15] C. M. Yue, On annihilator ideals IV, Riv. Mat. Univ. Parma., 13(4)(1987), 19-27.