References
- L. B. Beasley, Linear transformations on matrices: The invariance of commuting pairs of matrices, Linear and Multilinear Algebra, 6(1978), 179-183. https://doi.org/10.1080/03081087808817236
- L. B. Beasley and N. J. Pullman, Linear operators that strongly preserve commuting pairs of Boolean matrices, Linear Algebra Appl., 132(1990), 137-143. https://doi.org/10.1016/0024-3795(90)90059-L
- G. H. Chan and M. H. Lim, Linear transformations on symmetric matrices that preserve commutativity, Linear Algebra Appl., 47(1982), 11-22. https://doi.org/10.1016/0024-3795(82)90222-1
- M. D. Choi, A. A. Jafarian and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl., 87(1987), 227-241. https://doi.org/10.1016/0024-3795(87)90169-8
- H. Radjavi, Commutativity-preserving operators on symmetric matrices, Linear Algebra Appl., 61(1984), 219-228. https://doi.org/10.1016/0024-3795(84)90032-6
- S. Z. Song and L. B. Beasley, Linear operators that preserve commuting pairs of nonnegaitve real matrices, Linear and Multilinear Algebra, 51(3)(2003), 279-283. https://doi.org/10.1080/0308108031000084383
- S. Z. Song and K. T. Kang, Linear maps that preserve commuting pairs of matrices over general Boolean algebras, J. Korean Math. Soc., 43(1)(2006), 77-86. https://doi.org/10.4134/JKMS.2006.43.1.077
- W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl., 14(1976), 29-35. https://doi.org/10.1016/0024-3795(76)90060-4