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Abstract. There are many papers on linear operators that preserve commuting pairs of
matrices over fields or semirings. From these research works, we have a motivation to the
research on the linear operators that preserve commuting pairs of matrices over nonneg-
ative integers. We characterize the surjective linear operators that preserve commuting
pairs of matrices over nonnegative integers.

1. Introduction and preliminaries

Let Z+ be the nonnegative part of the ring of integers Z and let Mn(Z+) denote the
set of all n× n matrices over Z+. Similarly let B = {0, 1} be the binary Boolean algebra
and let Mn(B) denote the set of all n× n matrices over B. We denote the n× n identity
matrix by In and the n× n zero matrix by On. The n× n matrix all of whose entries are
zero except its (i,j)th, which is 1, is denoted Ei,j . We call Ei,j a cell. We denote the n×n
matrix all of whose entries are 1 by Jn. We omit the subscripts on I, O, and J when they
are implied by the context. If A and B are matrices in Mn(Z+), we say B dominates A
(written B≥A or A≤ B) if bi,j = 0 implies ai,j = 0 for all i,j. This provides a reflexive,
transitive relation on Mn(Z+)).

A mapping T: Mn(Z+) −→ Mn(Z+) is called a linear operator if T(αA + βB)=
α T(A) + β T(B) for all α, β ∈ Z+. For a linear operator T on Mn(Z+) and A, B ∈
Mn(Z+) with A ≤ B, we can easily show that T(A) ≤ T(B). Let ∆n = {(i, j) | 1 ≤
i, j ≤ n}. The set C of commuting pairs of matrices is the set of (unordered) pairs of
matrices (X, Y ) such that XY = Y X. We say that a linear operator T preserves C when
T(X)T(Y )=T(Y )T(X) if XY = Y X. We also say that a linear operator T strongly
preserves C when T(X)T(Y )=T(Y )T(X) if and only if XY = Y X. Commuting pairs of
matrices over fields or semirings have been the subject of research by many authors([1]-
[8]). In 1976 Watkins [8] proved that if n ≥ 4, M(F) is the set of n × n matrices over
an algebraically closed field of characteristic 0, and L is a nonsingular linear operator on
M(F) which preserves commuting pairs, then there exists an invertible matrix S in M(F),
a nonzero scalar c, and a linear functional f such that either L(X) = cSXS−1 + f(X)I or
L(X) = cSXtS−1 + f(X)I, for all X in M(F). In 1978, Beasley [1] extended this to the
case n = 3. Also in [1], Beasley showed that the same characterization holds if n ≥ 3 and
L strongly preserves commuting pairs. The real symmetric and complex Hermitian cases
were first investigated by Chan and Lim [3] in 1982; the same results were established as
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in the general case, with the exception that the invertible matrix must be orthogonal or
unitary. Further extensions and generalizations to more general fields were obtained by
Radjavi [5] and Choi, Jafarian, and Radjavi [4]. Beasley and Pullman [2] characterize the
linear operators that preserve commuting pairs of Boolean matrices. Boolean matrices are
important subject to the combinatorial matrix researchers. Often, parallels are sought for
results known for certain semirings. Song and et al obtained characterizations of the linear
operators that preserve the commuting pairs of matrices over nonnegative reals [6] and
general Boolean algebras [7]. Here we investigate the set of linear operators on Mn(Z+)
which preserve the set of pairs of commuting matrices, where Z+ is the nonnegative part
of the ring of integers Z.

We obtain characterizations of surjective linear operators that preserve commuting
pairs of matrices over nonnegative integers.

2. Commuting pairs preservers of nonnegative integer matrices

Evidently, the following operations strongly preserve the set of commuting pairs of
matrices;

(a) transposition (X → Xt) ;

(b) similarity (X → SXS−1 for some fixed invertible matrix S).

In this section, we characterize the surjective linear operators that preserve commuting
pairs of matrices over nonnegative integers. We show that these linear operators are the
compositions of the transposition and similarity operators.

Lemma 2.1. Let T: Mn(Z+) −→ Mn(Z+) be a linear operator on Mn(Z+). Then the
following are equivalent:

(1) T is bijective.

(2) T is surjective.

(3) There exists a permutation σ on ∆n such that T(Ei,j) = Eσ(i,j)

Proof. That (1) implies (2) and (3) implies (1) is straight forward. We now show that (2)
implies (3). We assume that T is surjective. Then, for any pair (i, j) ∈ ∆n, there exists a
matrix X ∈ Mn(Z+) such that T(X) = Ei,j . Clearly X 6= O by the linearity of T. Thus
there is (r, s) ∈ ∆n such that X = xr,sEr,s + X ′ where (r, s) entry of X ′ is zero and the
following two conditions are satisfied: xr,s 6= 0 and T(Er,s) 6= O. Since Z+ has no zero
divisors it follows that

T (xr,sEr,s) ≤ T (xr,sEr,s) + T (X \ (xr,sEr,s)) = T (X) = Ei,j ,

equivalently,
T (xr,sEr,s) = xr,sT (Er,s) ≤ Ei,j ,

and so T(Er,s) ≤ Ei,j . It follows from xr,s 6= 0 that T(Er,s) = br,sEi,j for some nonzero
scalar br,s. Let Pi,j = {Er,s | T(Er,s) ≤ Ei,j}. By the above Pi,j 6= φ for all (i, j) ∈ ∆n.
By its definition, Pi,j ∩ Pu,v = φ whenever (i, j) 6= (u, v). That is, {Pi,j} is the set of
n2 nonempty sets which partition the set of cells. By the pigeonhole principle, we must
have that | Pi,j |= 1 for all (i, j) ∈ ∆n. Necessarily, for each pair (r, s) there is the
unique pair (i, j) such that T(Er,s) = br,sEi,j . Thus, there is some permutation σ on
{(i, j) | i, j = 1, 2, · · · , n} such that T(Ei,j) = bi,jEσ(i,j), for scalars bi,j . We now only
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need to show that bi,j = 1, for all i, j. Since T is surjective and T(Er,s) 6≤ Eσ(i,j) for
(r, s) 6= (i, j), there is some α such that T(αEi,j) = Eσ(i,j). Since T is linear,

Eσ(i,j) = T (αEi,j) = αT (Ei,j) = αbi,jEσ(i,j).

That is, αbi,j = 1, or bi,j is unit. Since 1 is the only unit element in Z+, bi,j = 1 for all
(i, j) ∈ ∆n �

We denote Cn(Z+) as the set of commuting pairs of matrices over Z+; that is, Cn(Z+)
={(A, B) ∈M2(Z+) | AB = BA} .

Example 2.2. For A ∈Mn(Z+), define a map T on Mn(Z+) by

T (X) =

(
n∑

i,j=1

xi,j

)
A

for all X=[xi,j ] ∈ Mn(Z+). Then T is a linear operator and that T(Er,s) = A for all
(r, s) ∈ ∆n. Thus T is not surjective by Lemma 2.1. And we can easily show that T
preserves commuting pairs of matrices, while it does not preserve non-commuting pairs of
matrices.

Thus, we are interested in the surjective linear operators that

(T (A), T (B)) ∈ Cn(Z+) if and only if (A, B) ∈ Cn(Z+).

For a matrix A ∈ Mn(Z+), A is called invertible in Mn(Z+) if there exists a matrix
B ∈ Mn(Z+) such that AB = BA = In. It is well known [7] that all permutation
matrices are the only invertible matrices in Mn(B). Using this fact, we can easily show
that all permutation matrices are the only invertible matrices in Mn(Z+).

Theorem 2.3. Let T be a linear operator on Mn(Z+). Then T is a surjective linear
operator which preserves commuting pairs of matrices over nonnegative integers if and
only if there exists an invertible matrix U ∈Mn(Z+) such that either

(1) T(X) = UXU t for all X ∈Mn(Z+), or

(2) T(X) = UXtU t for all X ∈Mn(Z+).

Proof. Let T be a surjective linear operator on Mn(Z+) that preserves pairs of commuting
matrices. By Lemma 2.1, T is bijective and there exists a permutation σ on ∆n such that
T(Ei,j) = Eσ(i,j). Note that if AX = XA for all X ∈Mn(Z+), then we have A = αIn for
some α ∈ Z+. Thus we have T(In) = βIn for some β ∈ Z+ because T is bijective. Since T
maps a cell onto a cell, T(In) = In. It follows that there is a permutation γ of {1, · · · , n}
such that T (Ei,i) = Eγ(i)γ(i) for each i = 1, · · · , n. Define L: Mn(Z+) → Mn(Z+)
by L(X) = PT(X)P t, where P is the permutation matrix corresponding to γ so that
L(Ei,i) = Ei,i for each i = 1, · · · , n. Then we can easily show that L is a bijective linear
operator on Mn(Z+) which preserves pairs of commuting matrices. By Lemma 2.1, L
maps a cell onto a cell. Therefore, there exists (p, q) ∈ ∆n such that L(Er,s) = Ep,q for
any (r, s) ∈ ∆n.

Suppose that r 6= s. Since L is bijective, we have p 6= q because L(Ei,i) = Ei,i for each
i = 1, · · · , n. Assume that p 6= r and p 6= s. Then

Er,s(Er,r + Es,s + Ep,p) = (Er,r + Es,s + Ep,p)Er,s
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so that
L(Er,s)L(Er,r + Es,s + Ep,p) = L(Er,r + Es,s + Ep,p)L(Er,s),

equivalently,
Ep,q(Er,r + Es,s + Ep,p) = (Er,r + Es,s + Ep,p)Ep,q.

It follows that q = r or q = s. Since Er,s(Er,r + Es,s) = (Er,r + Es,s)Er,s, we have

L(Er,s)L(Er,r + Es,s) = L(Er,r + Es,s)L(Er,s),

equivalently,
Ep,q(Er,r + Es,s) = (Er,r + Es,s)Ep,q.

Since q = r or q = s, we have Ep,q(Er,r + Es,s) = Ep,r or Ep,s, but (Er,r + Es,s)Ep,q = 0,
a contradiction. Hence we have p = r or p = s. Similarly we obtain q = r or q = s.
Therefore we have L(Er,s) = Er,s or L(Er,s) = Es,r for each (r, s) ∈ ∆n. Suppose
that L(Er,s) = Er,s with r 6= s and L(Er,t) = Et,r for some t 6= r, s. Then we have
L(Es,t + Et,s) = Es,t + Et,s. Let A = Er,r + Es,t + Et,s so that L(A) = Er,r + Es,t + Et,s.
Then (Er,s + Er,t)A = A(Er,s + Er,t), and hence

L(Er,s + Er,t)L(A) = L(A)L(Er,s + Er,t).

But
L(Er,s + Er,t)L(A) = Er,t + Et,r,

while
L(A)L(Er,s + Er,t) = Er,s + Es,r.

Thus we have t = s, a contradiction. It follows that if L(Ei,j) = Ei,j for some pair (i, j) ∈
∆n with i 6= j, then L(Er,s) = Er,s for all pairs (r, s) ∈ ∆n. Similarly, if L(Ei,j) = Ej,i for
some pair (i, j) ∈ ∆n with i 6= j, then L(Er,s) = Es,r for all pairs (r, s) ∈ ∆n. We have
established that either L(X) = X for all X ∈Mn(Z+) or L(X) = Xt for all X ∈Mn(Z+).
Therefore T(X) = P tXP or T(X) = P tXtP for all X ∈ Mn(Z+). If U = P t, then we
have T(X) = UXU t or T(X) = UXtU t for all X ∈Mn(Z+).
The converse is immediate. �

Thus we have characterized the surjective linear operators that preserve commuting
pairs of matrices over nonnegative integers.
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