Weak Distributive n-Semilattices and n-Lattices

  • Lim, Seon-Ju (Department of Mathematics & Statistics, Sookmyung Women's University)
  • 투고 : 2006.01.16
  • 발행 : 2007.06.23

초록

We define weak distributive $n$-semilattices and $n$-lattices, using variants of the absorption law and those of the distributive law. From a weak distributive $n$-semilattice, we construct direct system of subalgebras which are weak distributive $n$-lattices and show that its direct limit is a reflection of the category $wDn$-SLatt of the weak distributive $n$-semilattices.

키워드

참고문헌

  1. J. Adamek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley Sons, Inc, New York, 1990.
  2. B. Davey and H. Priestley, Introdution to Lattices and Order, Combridge University Press, New York, 1990.
  3. J. Galuszka, Generalized absorption laws in bisemilattices, Algebra Universalis, 19(1984), 304-318. https://doi.org/10.1007/BF01201097
  4. G. Gratzer, Universal Algebra, 2nd ed. Springer-Verlag, New York, 1970.
  5. S. S. Hong and Y. H. Hong, Abstract Algebra, Towers, Seoul, 1976.
  6. A. Knoeble and A. Romanowska, Distributive multisemilattices, Dissertationes Mathematicae, CCCIX(1991), 4-42.
  7. R. Padmanabhan, regular identities in lattices, Trans. Amer. Math. Soc., 158(1971), 179-188. https://doi.org/10.1090/S0002-9947-1971-0281661-3
  8. J. Plonka, On distributive quasilattices, Fund. Math., 60(1967), 191-200. https://doi.org/10.4064/fm-60-2-191-200
  9. J. Plonka, On distributive n-lattices and n-quasilattices, Fund. Math., 62(1967), 293-300.
  10. J. Plonka, Some remarks on sums of direct systems of algebras, Fund. Math., 62(1968), 301-308. https://doi.org/10.4064/fm-62-3-301-308