KYUNGPOOK Math. J. 47(2007), 227-237

Weak Distributive *n*-Semilattices and *n*-Lattices

SEON-JU LIM Department of Mathematics & Statistics, Sookmyung Women's University, Seoul 140-742, Korea e-mail: sjlim@sookmyung.ac.kr

ABSTRACT. We define weak distributive *n*-semilattices and *n*-lattices, using variants of the absorption law and those of the distributive law. From a weak distributive *n*-semilattice, we construct direct system of subalgebras which are weak distributive *n*-lattices and show that its direct limit is a reflection of the category $\mathbf{wD}n$ -SLatt of the weak distributive *n*-semilattices.

1. Introduction

A semilattice is an algebra, $S = (S, \vee)$, with one binary operation \vee that is idempotent, commutative and associative, that is, the following identities hold in S:

$$\begin{array}{rcl} x \lor x &=& x & (\text{idempotence}), \\ x \lor y &=& y \lor x & (\text{commutativity}), \\ (x \lor y) \lor z &=& x \lor (y \lor z) \text{ (associativity).} \end{array}$$

An algebra (B, \lor, \land) with two binary operations \lor and \land is called a *bisemilattice* if both of its reducts (B, \lor) and (B, \land) are semilattices. This notion was introduced by J. Plonka in [8] under the name *quasilattice*. However, it is called *bisemilattice* by other author ([3], [6], [7]). In particular, a bisemilattice is *distributive* if it satisfies the following two distributivity:

$$\begin{aligned} x \wedge (y \lor z) &= (x \wedge y) \lor (x \wedge z), \\ x \lor (y \wedge z) &= (x \lor y) \land (x \lor z). \end{aligned}$$

Plonka has generalized distributive bisemilattice to distributive *n*-semilattice and distributive *n*-lattice([9]). A distributive *n*-semilattice (S, F) which is an algebra with a family $F = \{\circ_i \mid i \in [n]\}$ of *n* binary semilattice operations on a common set *S* in which each pair of semilattice operations satisfy both distributive laws. A distributive *n*-semilattice (S, F) is called a *distributive n*-lattice if it satisfies

Received January 16, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 06A12, 06B99, 18A30, 18A40.

Key words and phrases: n-semilattice, n-lattice, weak distributive, generalized absorption law, reflection, direct limit.

moreover the following generalized absorption law for the sequence $I = (1, 2, \dots, n)$ of indices of $F = \{\circ_i \mid i \in [n]\}$

$$a \circ_1 (a \circ_2 (\cdots (a \circ_{n-1} (a \circ_n b)) \cdots)) = a.$$

In 1971, R. Padmanbhan define a *weak distributive bisemilattice*, which is a bisemilattice satisfying the weak distributivity (it was studied under the name quasilattice in [7]):

$$((a \land b) \lor c) \land (b \lor c) = (a \land b) \lor c \text{ and } ((a \lor b) \land c) \lor (b \land c) = (a \lor b) \land c.$$

In this paper, we are concerned with categorical properties of certain algebras which we call weak distributive n-semilattices. These algebras generalize weak distributive bisemilattices. A weak distributive n-semilattice is an algebra with a family of n binary semilattice operations on a common underlying set which are mutually weak distributive. A weak distributive n-semilattice will be called a weak distributive n-lattice, if it satisfies the generalized absorption law, which generalizes the absorption law for lattices. Furthermore, weak distributive n-semilattices (or weak distributive n-lattices) generalize distributive n-semilattices (or distributive n-lattices, respectively). We show that every weak distributive n-semilattices has a partition consisting of weak distributive n-lattices and then the family of week distributive n-lattices in the partition forms a direct system in the category wDn-Latt of weak distributive n-lattices and homomorphisms. Furthermore, we prove that its direct limit gives rise to the reflection. For the terminology not introduced in the paper, we refer to [1] for the category theory, [2] for the ordered sets and [4], [5] for the abstract algebra.

2. Weak distributive *n*-semilattices

Let us start with a definition of weak distributive n-semilattice which is a generalization of both weak distributive bisemilattice and distributive n-semilattice.

Definition 2.1. An algebra W = (W, F) is called a *weak distributive n-semilattice* if it has a family $F = \{\circ_i \mid i \in [n]\}$ consisting of n binary operations which satisfy the following equations for any $i, j \in I$:

$a \circ_i a$	=	a	(idempotence),
$a\circ_i b$	=	$b\circ_i a$	(commutativity),
$(a \circ_i b) \circ_i c$	=	$a \circ_i (b \circ_i c)$	(associativity),
$((a \circ_i b) \circ_j c) \circ_i (b \circ_j c)$	=	$(a \circ_i b) \circ_j c$	$(weak \ distributivity).$

A weak distributive *n*-semilattice is called a *weak distributive n-lattice* if it satisfies the generalized absorption law:

(*)
$$a \circ_{\sigma(1)} (a \circ_{\sigma(2)} (\cdots (a \circ_{\sigma(n-1)} (a \circ_{\sigma(n)} b)) \cdots)) = a$$

for any permutation $\sigma \in Sym(n)$.

In the case n = 2, it is clear that a weak distributive *n*-semilattice is a weak distributive bisemilattice and a weak distributive *n*-lattice is a lattice. In a weak distributive n-lattice, the condition (*) can be reduced to the condition

$$a \circ_1 (a \circ_2 (\cdots (a \circ_{n-1} (a \circ_n b)) \cdots)) = a,$$

because it can be easily shown by the weak distributivity. A distributive n-semilattice (or n-lattice) is a weak distributive n-semilattice (or n-lattice, respectively). But a weak distributive *n*-semilattice (or *n*-lattice) need not be a distributive *n*-semilattice (or *n*-lattices, respectively).

From now on, an *n*-semilattice W = (W, F) with a family $F = \{\circ_i \mid i \in [n]\}$ of n semilattice operations will be denoted by W = (W, F) or W, simply.

Remark 2.2.

- (1) It is easy to see that an *n*-semilattice W = (W, F) is weak distributive if and only if $a \circ_i b = b$ implies $(a \circ_j c) \circ_i (b \circ_j c) = b \circ_j c$ for any $j \in [n]$ and any $c \in W$.
- (2) Let (W, F) be a weak distributive *n*-semilattice. If $a \circ_i b = a$ and $c \circ_i d = c$, then for any $j \in [n]$, we have by (1),

$$(a \circ_j c) \circ_i (b \circ_j d) = a \circ_j c.$$

Now we obtain some properties of weak distributive n-semilattices and nlattices, which will be needed in the formation of the direct system in the category wDn-Latt of weak distributive *n*-lattices and homomorphisms.

Lemma 2.3. Let W = (W, F) be a weak distributive n-semilattice. Then for any $i, j \in [n]$, the following equations hold.

 $a \circ_i (b \circ_j a) = (a \circ_i b) \circ_j a,$ (1)

(2)
$$a \circ_i (a \circ_j b) \circ_i (c \circ_j b) = a \circ_i (c \circ_j b),$$

$$(3) a \circ_i (a \circ_j b) \circ_i (a \circ_j b \circ_j c) = a \circ_i (a \circ_j b \circ_j c),$$

(4)
$$a \circ_i b \circ_i (a \circ_j c) = a \circ_i b \circ_i (b \circ_j c),$$

(6)
$$a \circ_i (a \circ_j (b \circ_i (b \circ_j c))) = a \circ_i (a \circ_j (c \circ_i (c \circ_j b))),$$

$$(0) \qquad a \circ_i (a \circ_j (o \circ_i (o \circ_j c))) = a \circ_i (a \circ_j (o \circ_i (o \circ_j c))),$$

$$(7) \qquad a \circ_i (a \circ_j (b \circ_i (b \circ_j c))) = a \circ_i (a \circ_j b) \circ_i ((a \circ_i (a \circ_j b)) \circ_j c),$$

$$(8) \qquad a \circ_i b \circ_i ((a \circ_i b) \circ_i c) = a \circ_i (a \circ_i c) \circ_i b = a \circ_i b \circ_i (b \circ_i c).$$

$$(8) a \circ_i b \circ_i ((a \circ_i b) \circ_j c) = a \circ_i (a \circ_j c) \circ_i b = a \circ_i b \circ_i (b \circ_j c)$$

$$(9) \qquad a \circ_i (a \circ_j (b \circ_i (b \circ_j (a \circ_i b)))) = a \circ_i (a \circ_j b).$$

Seon-Ju Lim

Proof. (1) It follows from the definition of weak distributive *n*-semilattice. (2) From the associativity, weak distributivity and (2) of Remark 2.2, we have

$$\begin{array}{lll} a \circ_i (a \circ_j b) \circ_i (c \circ_j b) &=& ((c \circ_j b) \circ_i a) \circ_i (a \circ_j b) \\ &=& (((c \circ_j b) \circ_i a) \circ_j (a \circ_i b)) \circ_i (a \circ_j b) \\ &=& ((c \circ_j b) \circ_i a) \circ_j (b \circ_i a) = (c \circ_j b) \circ_i a. \end{array}$$

(3) Equation (3) follows from (2) by the substitution $b = a \circ_j b$. (4) From (2),

$$\begin{array}{rcl} a \circ_{i} b \circ_{i} (a \circ_{j} c) &=& a \circ_{i} (b \circ_{i} (a \circ_{j} c)) \\ &=& a \circ_{i} (b \circ_{i} (b \circ_{j} c) \circ_{i} (a \circ_{j} c)) \\ &=& a \circ_{i} (b \circ_{j} c) \circ_{i} b \circ_{i} (a \circ_{j} c) \\ &=& b \circ_{i} (a \circ_{i} (a \circ_{j} c) \circ_{i} (b \circ_{j} c)) \\ &=& b \circ_{i} (a \circ_{i} (b \circ_{j} c)) \\ &=& a \circ_{i} b \circ_{i} (b \circ_{j} c). \end{array}$$

(5) Using (4) and the weak distributivity, we obtain

$$\begin{aligned} a \circ_{i} (a \circ_{j} b) \circ_{i} (a \circ_{j} c) &= a \circ_{i} (a \circ_{j} b) \circ_{i} (a \circ_{j} b \circ_{j} c) \\ &= a \circ_{i} ((a \circ_{j} b) \circ_{j} ((a \circ_{j} b) \circ_{i} c)) \\ &= a \circ_{i} ((a \circ_{j} b) \circ_{j} (b \circ_{i} c) \circ_{j} ((a \circ_{j} b) \circ_{i} c)) \\ &= a \circ_{i} ((a \circ_{j} b) \circ_{j} (b \circ_{i} c) \circ_{j} ((b \circ_{i} c) \circ_{i} c)) \\ &= a \circ_{i} ((a \circ_{j} b) \circ_{j} (b \circ_{i} c)) \\ &= a \circ_{i} (a \circ_{j} (b \circ_{i} c)) \circ_{i} ((a \circ_{j} b) \circ_{j} (b \circ_{i} c)) \\ &= a \circ_{i} (a \circ_{j} (b \circ_{i} c)) \circ_{i} (a \circ_{j} b \circ_{j} (b \circ_{i} c)) \\ &= a \circ_{i} (a \circ_{j} (b \circ_{i} c)) \circ_{i} (a \circ_{j} b \circ_{j} (b \circ_{i} c)) \\ &= a \circ_{i} (a \circ_{j} (b \circ_{i} c)) \circ_{i} (a \circ_{j} b \circ_{j} (b \circ_{i} c)) \end{aligned}$$

(6) Using (1) and (2), we have

$$\begin{array}{rcl} a \circ_{i} (a \circ_{j} (b \circ_{i} (b \circ_{j} c))) &=& a \circ_{i} (a \circ_{j} b \circ_{j} (b \circ_{i} c)) \\ &=& a \circ_{i} (a \circ_{j} (b \circ_{i} c)) \circ_{i} (a \circ_{j} b \circ_{j} (b \circ_{i} c)) \\ &=& ((a \circ_{i} b \circ_{i} c) \circ_{j} a) \circ_{i} (a \circ_{j} b \circ_{j} (b \circ_{i} c)) \\ &=& a \circ_{j} (a \circ_{i} b \circ_{i} c) , \end{array}$$

and similarly, $a \circ_i (a \circ_j (c \circ_i (c \circ_j b))) = a \circ_j (a \circ_i b \circ_i c)$. It is easy to show that equation (7) hold using (1) and (5). Equations (8) and (9) follow from (4) by the substitution $b = a \circ_i b$ and (1), respectively. This completes the proof.

Note that a weak distributive *n*-semilattice W = (W, F) is an algebra of type *n*. Then we may denote the operations of W by $\circ_1, \circ_2, \cdots, \circ_n$. We observe that for any $k \in [n]$, there is a subsequence $K = (i_1, i_2, \cdots, i_k)$ of the sequence $I = (1, 2, \cdots, n)$.

230

In the following, we denote $a \circ_{i_1} (a \circ_{i_2} (\cdots (a \circ_{i_{k-1}} (a \circ_{i_k} b)) \cdots))$ by $f_{i_1,i_2,\cdots,i_k}(a,b)$ or $f_K(a,b)$ for the convenience.

Lemma 2.4. If W = (W, F) is a weak distributive n-semilattice, then for any $i \in [n]$, we have the following equations:

- (1) $f_I(a, b \circ_i c) = f_I(a, b) \circ_i f_I(a, c)$ and $f_I(a \circ_i b, c) = f_I(a, c) \circ_i f_I(b, c)$,
- (2) $f_I(a \circ_i b, a) = a \circ_i b = f_I(a \circ_i b, b),$
- (3) $f_K(f_K(a,b),c) = f_K(a, f_K(b,c)) = f_K(a, f_K(c,b))$ for any nonempty subsequence K of I.

Proof. (1) For any $i, k \in [n]$, we denote the subsequences $(1, 2, \dots, i)$ and $(1, 2, \dots, k - 1, k + 1, \dots, i)$ of the sequence $I = (1, 2, \dots, n)$ by I_i and $I_i - \{k\}$, respectively. Using (5) and (8) of Lemma 2.3., we have

$$\begin{split} f_{I}\left(a,b\circ_{i}c\right) &= f_{I_{n-1}}\left(a,a\circ_{n}\left(b\circ_{i}c\right)\right) \\ &= f_{I_{n-1}-\{i\}}\left(a,a\circ_{i}\left(a\circ_{n}\left(b\circ_{i}c\right)\right)\right) \\ &= f_{I_{n-1}-\{i\}}\left(a,a\circ_{i}\left(a\circ_{n}b\right)\circ_{i}\left(a\circ_{n}c\right)\right) \\ &= f_{I_{n-2}}\left(a,\left(a\circ_{n-1}\left(a\circ_{n}b\right)\right)\circ_{i}\left(a\circ_{n-1}\left(a\circ_{n}c\right)\right)\right) \\ &= f_{I_{n-2}}\left(a,f_{n-1,n}\left(a,b\right)\circ_{i}f_{n-1,n}\left(a,c\right)\right) \\ &= f_{I_{n-3}}\left(a,a\circ_{n-2}\left(f_{n-1,n}\left(a,b\right)\circ_{i}f_{n-1,n}\left(a,c\right)\right)\right) \\ &= f_{I_{n-3}}\left(a,f_{n-2,n-1,n}\left(a,b\right)\circ_{i}f_{n-2,n-1,n}\left(a,c\right)\right) \\ &= a\circ_{i}f_{I-\{i\}}\left(a,b\right)\circ_{i}a\circ_{i}f_{I-\{i\}}\left(a,c\right) \\ &= f_{I}\left(a,b\right)\circ_{i}f_{I}\left(a,c\right) \end{split}$$

and the second part is proved from (8) of Lemma 2.3 and idempotence;

$$\begin{split} f_{I}\left(a\circ_{i}b,c\right) &= f_{I_{n-1}-\{i\}}\left(a\circ_{i}b,(a\circ_{i}b)\circ_{i}\left((a\circ_{i}b)\circ_{n}c\right)\right) \\ &= f_{I_{n-1}-\{i\}}\left(a\circ_{i}b,(a\circ_{i}b)\circ_{i}\left(a\circ_{n}c\right)\circ_{i}\left(a\circ_{i}b\right)\circ_{i}\left(b\circ_{n}c\right)\right) \\ &= f_{I_{n-1}}\left(a\circ_{i}b,(a\circ_{n}c)\circ_{i}\left(b\circ_{n}c\right)\right) \\ &= f_{I_{n-1}}\left(a\circ_{i}b,a\circ_{n}c\right)\circ_{i}f_{I_{n-1}}\left(a\circ_{i}b,b\circ_{n}c\right) \\ &= f_{I_{n-2}}\left(a\circ_{i}b,(a\circ_{i}b)\circ_{n-1}\left(a\circ_{n}c\right)\right)\circ_{i}f_{I_{n-2}}\left(a\circ_{i}b,(a\circ_{i}b)\circ_{n-1}\left(b\circ_{n}c\right)\right) \right) \\ &= f_{I_{n-2}-\{i\}}\left(a\circ_{i}b,a\circ_{i}b\circ_{i}\left((a\circ_{i}b)\circ_{n-1}\left(a\circ_{n}c\right)\right)\right) \\ &\circ_{i}f_{I_{n-2}-\{i\}}\left(a\circ_{i}b,a\circ_{i}b\circ_{i}\left(a\circ_{n-1}\left(a\circ_{n}c\right)\right)\right) \\ &\circ_{i}f_{I_{n-2}-\{i\}}\left(a\circ_{i}b,a\circ_{i}b\circ_{i}\left(a\circ_{n-1}\left(a\circ_{n}c\right)\right)\right) \\ &\circ_{i}f_{I_{n-2}-\{i\}}\left(a\circ_{i}b,a\circ_{i}b\circ_{n-2}\left(b\circ_{n-1}\left(b\circ_{n}c\right)\right)\right) \\ &\circ_{i}f_{I_{n-3}}\left(a\circ_{i}b,a\circ_{i}b\circ_{n-2}\left(b\circ_{n-1}\left(b\circ_{n}c\right)\right)\right) \end{split}$$

Seon-Ju Lim

$$= f_{I_{n-3}-\{i\}} (a \circ_i b, (a \circ_i b) \circ_i (a \circ_{n-2} (a \circ_{n-1} (a \circ_n c)))) \circ_i f_{I_{n-3}-\{i\}} (a \circ_i b, (a \circ_i b) \circ_i (b \circ_{n-2} (b \circ_{n-1} (b \circ_n c)))) \vdots = f_{1,i} (a \circ_i b, f_{I-\{1,i\}} (a, c)) \circ_i f_{1,i} (a \circ_i b, f_{I-\{1,i\}} (b, c)) = (a \circ_i b) \circ_i ((a \circ_i b) \circ_1 f_{I-\{1,i\}} (a, c)) \circ_i (a \circ_i b) \circ_i ((a \circ_i b) \circ_1 f_{I-\{1,i\}} (b, c)) = (a \circ_i b \circ_i a \circ_1 f_{I-\{1,i\}} (a, c)) \circ_i (a \circ_i b \circ_i b \circ_1 f_{I-\{1,i\}} (b, c)) = a \circ_i (a \circ_1 f_{I-\{1,i\}} (a, c)) \circ_i b \circ_i (b \circ_1 f_{I-\{1,i\}} (b, c)) = f_I (a, c) \circ_i f_I (b, c).$$

(2) From the weak distributivity and idempotence, we have

$$\begin{aligned} f_I \left(a \circ_i b, b \right) &= f_{1,2,\dots,n-1} \left(a \circ_i b, (a \circ_i b) \circ_n b \right) \\ &= f_{1,2,\dots,i-1,i+1,\dots,n} \left(a \circ_i b, (a \circ_i b) \circ_i b \right) \\ &= a \circ_i b. \end{aligned}$$

Interchange roles of a and b, $f_I(a \circ_i b, a) = a \circ_i b$ holds. (3) First, we show that for any nonempty subsequence $K = (i_1, i_2, \dots, i_k)$ of $(1, 2, \dots, n)$,

$$\begin{aligned} f_{i_1,i_2,\cdots,i_k} \left(a, f_{i_1,i_2,\cdots,i_k} \left(b, c \right) \right) &= a \circ_{i_1} \left(a \circ_{i_2} \left(\cdots \left(a_{i_{k-1}} \left(a \circ_{i_k} b \circ_{i_k} c \right) \right) \cdots \right) \right) \\ &= f_{i_1,i_2,\cdots,i_k} \left(a, b \circ_{i_k} c \right). \end{aligned}$$

We use the induction on k. If k = 2, then by (5), (2) of Lemma 2.3.,

$$\begin{aligned} f_{i_1,i_2}\left(a, f_{i_1,i_2}\left(b, c\right)\right) &= a \circ_{i_1} \left(a \circ_{i_2} \left(b \circ_{i_1} \left(b \circ_{i_2} c\right)\right)\right) \\ &= a \circ_{i_1} \left(a \circ_{i_2} b\right) \circ_{i_1} \left(a \circ_{i_2} b \circ_{i_2} c\right) = a \circ_{i_1} \left(a \circ_{i_2} b \circ_{i_2} c\right) \\ &= f_{i_1,i_2}\left(a, b \circ_{i_2} c\right). \end{aligned}$$

Assume that the above statement is true for all sequences of indices with the length $\leq k - 1$. Let $K = (i_1, i_2, \dots, i_k)$ and $J = (i_1, i_2, \dots, i_{k-1})$. Then by induction hypothesis, (5) and (3) of Lemma 2.3, we have

$$\begin{aligned} f_K(a, f_K(b, c)) &= f_K(a, f_J(b, b \circ_{i_k} c)) \\ &= a \circ_{i_k} f_J(a, f_J(b, b \circ_{i_k} c)) \\ &= a \circ_{i_k} f_J(a, b \circ_{i_{k-1}} (b \circ_{i_k} c)) \\ &= f_J(a, a \circ_{i_k} (b \circ_{i_{k-1}} (b \circ_{i_k} c))) \\ &= f_J(a, (a \circ_{i_k} b) \circ_{i_{k-1}} (a \circ_{i_k} b \circ_{i_k} c)) \\ &= f_J(a, a \circ_{i_k} b \circ_{i_k} c) \\ &= f_K(a, b \circ_{i_k} c). \end{aligned}$$

232

Hence $f_K(a, f_K(b, c)) = f_K(a, b \circ_{i_k} c) = f_K(a, f_K(c, b))$. Also, we show that

$$f_K(f_K(a,b),c) = a \circ_{i_1} \left(a \circ_{i_2} \left(\cdots \left(a \circ_{i_{k-1}} (a \circ_{i_k} b \circ_{i_k} c) \right) \cdots \right) \right) \\ = f_K(a,b \circ_{i_k},c).$$

First, we claim that for index $J = (i_1, i_2, \cdots, i_n)$ $(2 \le n \le k - 1)$

$$f_J(f_K(a,b),c) = a \circ_{i_1} (a \circ_{i_2} (\dots (a \circ_{i_n} f_{K-J}(a,b) \circ_{i_n} c) \dots))$$

= $f_J(a, f_{K-J}(a,b) \circ_{i_n} c).$

We use the induction on n. Let $S = (i_2, i_3, \dots, i_k)$ and $T = (i_3, \dots, i_k)$. If n = 2, then by (7), (5) and (3) of Lemma 2.3,

$$\begin{aligned} f_{i_1,i_2}\left(f_K\left(a,b\right),c\right) &= f_K\left(a,b\right)\circ_{i_1}\left(f_K\left(a,b\right)\circ_{i_2}c\right) \\ &= \circ_{i_1}f_S\left(a,b\right)\circ_{i_1}\left(\left(a\circ_{i_1}f_S\left(a,b\right)\right)\circ_{i_2}c\right) \\ &= a\circ_{i_1}\left(a\circ_{i_2}f_T\left(a,b\right)\right)\circ_{i_1}\left(\left(a\circ_{i_1}\left(a\circ_{i_2}f_T\left(a,b\right)\right)\right)\right)\circ_{i_2}c\right) \\ &= a\circ_{i_1}\left(a\circ_{i_2}\left(f_T\left(a,b\right)\circ_{i_1}\left(f_T\left(a,b\right)\circ_{i_2}c\right)\right)\right) \\ &= a\circ_{i_1}\left(a\circ_{i_2}f_T\left(a,b\right)\right)\circ_{i_1}\left(a\circ_{i_2}f_T\left(a,b\right)\circ_{i_2}c\right) \\ &= a\circ_{i_1}\left(a\circ_{i_2}f_T\left(a,b\right)\circ_{i_2}c\right) \\ &= a\circ_{i_1}\left(a\circ_{i_2}f_{K-\{i_1,i_2\}}\left(a,b\right)\circ_{i_2}c\right) \\ &= f_{i_1,i_2}\left(a,f_{K-\{i_1,i_2\}}\left(a,b\right)\circ_{i_2}c\right). \end{aligned}$$

Assume that

$$f_{J}(f_{K}(a,b),c) = a \circ_{i_{1}} (a \circ_{i_{2}} (\cdots (a \circ_{i_{n}} f_{K-J}(a,b) \circ_{i_{n}} c) \cdots)) = f_{J}(a, f_{K-J}(a,b) \circ_{i_{n}} c).$$

holds for all $n \leq k-2$. Then by the induction hypothesis, (1) and (3) of Lemma 2.3, we have

$$\begin{aligned} f_{i_1,\cdots,i_{k-1}}\left(f_K\left(a,b\right),c\right) &= f_{i_1,\cdots,i_{k-2}}\left(f_K\left(a,b\right),c\right)\circ_{i_{k-1}}f_K\left(a,b\right) \\ &= f_K\left(a,b\right)\circ_{i_{k-1}}f_{i_1,\cdots,i_{k-2}}\left(a,f_{K-J}\left(a,b\right)\circ_{i_{k-2}}c\right) \\ &= a\circ_{i_{k-1}}f_{i_1,\cdots,i_{k-2}}\left(a,a\circ_{i_k}b\right)\circ_{i_{k-1}}f_{i_1,\cdots,i_{k-2}}\left(a,f_{K-J}\left(a,b\right)\circ_{i_{k-2}}c\right) \\ &= a\circ_{i_{k-1}}f_{i_1,\cdots,i_{k-2}}\left(a,a\circ_{i_k}b\right)\circ_{i_{k-1}}\left(f_{K-J}\left(a,b\right)\circ_{i_{k-2}}c\right) \right) \\ &= f_{i_1,\cdots,i_{k-2}}\left(a,a\circ_{i_{k-1}}\left(a\circ_{i_k}b\right)\circ_{i_{k-1}}\left(\left(a\circ_{i_{k-1}}\left(a\circ_{i_k}b\right)\right)\circ_{i_{k-2}}c\right)\right) \\ &= f_{i_1,\cdots,i_{k-2}}\left(a,a\circ_{i_{k-1}}\left(a\circ_{i_k}b\right)\circ_{i_{k-2}}\left(a\circ_{i_{k-1}}\left(a\circ_{i_k}b\right)\circ_{i_{k-1}}c\right) \right) \\ &= f_{i_1,\cdots,i_{k-2}}\left(a,a\circ_{i_{k-1}}\left(a\circ_{i_k}b\right)\circ_{i_{k-1}}c\right) \\ &= f_{i_1,\cdots,i_{k-2}}\left(a,f_{K-\{i_1,i_2,\cdots,i_{k-1}\}}\left(a,b\right)\circ_{i_{k-1}}c\right). \end{aligned}$$

Using the above claim, we have

$$f_{i_1,i_2,\cdots,i_k}(f_K(a,b),c) = f_K(a,b \circ_{i_k} c).$$

This completes the proof.

3. wDn-SLatt and wDn-Latt

In this section, we prove that a weak distributive *n*-semilattice has a partition consisting of weak distributive *n*-lattices and which form a direct system in the category **wD***n***-Latt** of weak distributive *n*-lattices and homomorphisms. Furthermore, we show that the direct limit of this direct system gives to the reflection. Firstly, for a weak distributive *n*-semilattice W, we have a partition of weak distributive *n*-lattices of W by the following equivalence relation.

Proposition 3.1. Let W = (W, F) be a weak distributive n-semilattice. Define a binary relation θ on W as follows:

$$(a,b) \in \theta$$
 if and only if $f_I(a,b) = a$ and $f_I(b,a) = b$,

where $I = (1, 2, \dots, n)$. Then θ is an equivalence relation and each equivalence class $\theta(x)$ of x is a subalgebra of W. Moreover, each $\theta(x)$ is a weak distributive *n*-lattice.

Proof. Clearly, θ is reflexive and symmetric. Let $(a, b), (b, c) \in \theta$. Then

$$f_I(a,b) = a, f_I(b,a) = b = f_I(b,c)$$
 and $f_I(c,b) = c$.

Using (3) of Lemma 2.4, we have $(a, c) \in \theta$; θ is transitive. Then θ is an equivalence relation. It remains to show that each $\theta(x)$ is a subalgebra which is a weak distributive *n*-lattice. Take any $a, b \in \theta(x)$. Then

$$f_I(a, x) = a, f_I(x, a) = x = f_I(x, b)$$
 and $f_I(b, x) = b$.

Thus for any $j \in [n]$,

$$\begin{aligned} f_I(a \circ_j b, x) &= f_I(a, x) \circ_j f_I(b, x) = a \circ_j b, \\ f_I(x, a \circ_j b) &= f_I(x, a) \circ_j f_I(x, b) = x \circ_j x = x; \end{aligned}$$

 $a \circ_j b \in \theta(x)$. So $\theta(x)$ is a subalgebra of W. By the definition of θ and Lemma 2.4., $\theta(x)$ satisfies the generalized absorption law and thus each $\theta(x)$ is a weak distributive *n*-lattice.

Proposition 3.1 amounts to saying that for a weak distributive *n*-semilattice W = (W, F) we have a partition $\{W_{\alpha} \mid \alpha \in S\}$ of subalgebras of W which are weak distributive *n*-lattices. Here we consider a binary relation \leq on the set S of indices of the set $\{W_{\alpha} \mid \alpha \in S\}$ defined as follows :

 $\alpha \leq \beta$ if and only if there are $a \in W_{\alpha}, b \in W_{\beta}$ such that $f_I(b, a) = b$.

Then (S, \leq) is a join semilattice.

For $\alpha \leq \beta$ let $\varphi_{\alpha,\beta} : W_{\alpha} \longrightarrow W_{\beta}$ be the map defined by $\varphi_{\alpha,\beta}(a) = f_I(a,b)$, where b is an arbitrary element of W_{β} . Thus we have a family of homomorphisms $\{\varphi_{\alpha,\beta} \mid \alpha \leq \beta\}$. Moreover, for $\alpha \leq \beta$ and $\beta \leq \gamma$, $\varphi_{\alpha,\beta}(a) = f_I(a,b)$ and $\varphi_{\beta,\gamma}(b) = f_I(b,c)$, where $b \in W_\beta$ and $c \in W_\gamma$, and thus

$$\varphi_{\beta,\gamma} \circ \varphi_{\alpha,\beta}(a) = \varphi_{\beta,\gamma} \left(f_I(a,b) \right) = f_I \left(f_I(a,b), c \right)$$
$$= f_I \left(a, f_I(b,c) \right) = f_I \left(a, f_I(c,b) \right)$$
$$= f_I \left(a, c \right) = \varphi_{\alpha,\gamma} \left(a \right)$$

and

$$\varphi_{\alpha,\alpha}(a) = f_I(a,a) = a = 1_{W_\alpha}(a).$$

Then we obtain a direct system(see [4]) $((S, \leq), \{W_{\alpha} \mid \alpha \in S\}, \{\varphi_{\alpha,\beta} \mid \alpha \leq \beta\})$ of weak distributive *n*-lattices, where $\{W_{\alpha} \mid \alpha \in S\}$ is the partition of the given weak distributive *n*-semilattice *W*, given by Proposition 3.1.

Let $S(W) = (\bigcup_{\alpha \in S} W_{\alpha}, *_1, *_2, \cdots, *_n)$ be an algebra with *n* binary operations such that for $x \in W_{\alpha}, y \in W_{\beta}, x *_i y = \varphi_{\alpha,\gamma}(x) \circ_i \varphi_{\beta,\gamma}(y)$, where $\gamma = \alpha \lor \beta$ in the join semilattice (S, \leq) . Then one has the following Proposition :

Proposition 3.2. For any weak distributive n-semilattice $W = (W, \circ_1, \circ_2, \cdots, \circ_n)$, W and S(W) are identical.

Proof. For any $x, y \in W$, assume that $x \in W_{\alpha}$, $y \in W_{\beta}$ and let $\gamma = \alpha \lor \beta$, then $z = x \circ_i y \in W_{\gamma}$, by the above argument. Then $x *_i y = \varphi_{\alpha,\gamma}(x) \circ_i \varphi_{\beta,\gamma}(y) = f_I(x,z) \circ_i f_I(y,z) = f_I(x \circ_i y, z) = f_I(z,z) = z = x \circ_i y$ for all $i \in [n]$. \Box

From the definition of homomorphism $\varphi_{\alpha,\beta}$ and Proposition 3.2, we have the following theorem:

Theorem 3.3. For a weak distributive n-semilattice $W = (W, \circ_1, \circ_2, \dots, \circ_n)$, let $S(W) = (\bigcup_{\alpha \in S} W_{\alpha}, *_1, *_2, \dots, *_n) = (W, \circ_1, \circ_2, \dots, \circ_n)$ in the above Proposition 3.2. Define a binary relation Λ on S(W) by $(x, y) \in \Lambda$ if and only if $x \in W_{\alpha}$, $y \in W_{\beta}$ for some $\alpha, \beta \in S$ and there exists $\gamma \in S$ such that $\alpha \leq \gamma, \beta \leq \gamma$, $\varphi_{\alpha,\gamma}(x) = \varphi_{\beta,\gamma}(y)$, i.e., $f_I(x, z) = f_I(y, z)$, where z is an arbitrary element of W_{γ} . Then the relation Λ is a congruence on S(W).

The following theorem follows from Theorem 3.3.

Theorem 3.4. The quotient algebra $(S(W) / \Lambda, *_1, *_2, \dots, *_n)$ of S(W) is a weak distributive n-lattice.

Proof. It is enough to show that $S(W) / \Lambda$ satisfies the generalized absorption law. Let $x \in W_{\alpha}$ and $y \in W_{\beta}$ for some $\alpha, \beta \in S$, then there exists $\gamma \in S$ such that $\alpha, \beta \leq \gamma$. So

$$[x]_{\Lambda} *_{1} ([x]_{\Lambda} *_{2} (\cdots ([x]_{\Lambda} *_{n-1} ([x]_{\Lambda} *_{n} [y]_{\Lambda})) \cdots))$$

$$= [\varphi_{\alpha,\gamma} (x) \circ_{1} (\varphi_{\alpha,\gamma} (x) \circ_{2} (\cdots (\varphi_{\alpha,\gamma} (x) \circ_{n-1} (\varphi_{\alpha,\gamma} (x) \circ_{n} \varphi_{\beta,\gamma} (y))) \cdots))]_{\Lambda}$$

$$= [\varphi_{\alpha,\gamma} (x)]_{\Lambda} = [x]_{\Lambda}.$$

Seon-Ju Lim

Hence $S(W) / \Lambda$ is a weak distributive *n*-lattice.

As the following terminologies are refer to [4], we obtain the following facts:

Remark 3.5. For a weak distributive *n*-semilattice $W = (W, \circ_1, \circ_2, \cdots, \circ_n)$, W and S(W) are identical. Thus, $S(W)/\Lambda$ may be viewed as a quotient algebra of W. In fact, W/Λ is the direct limit of the direct system

$$((S, \leq), \{W_{\alpha} \mid \alpha \in S\}, \{\varphi_{\alpha,\beta} \mid \alpha \leq \beta\}).$$

The class of weak distributive *n*-semilattices and homomorphisms between them forms a category, which will be denoted by wDn-SLatt, and the class of weak distributive *n*-lattices forms a full subcategory of wDn-SLatt, which will be denoted by wDn-Latt.

Theorem 3.6. The category wDn-Latt is a reflective subcategory of the category wDn-SLatt.

Proof. For a weak distributive *n*-semilattice $W = (W, \circ_1, \circ_2, \dots, \circ_n)$, let *q* : $W \longrightarrow W/\Lambda$ be the quotient homomorphism, where Λ is the congruence given in Theorem 3.3. Then $(q, W/\Lambda)$ is the **wDn-Latt**-reflection of $W \in$ **wDn-SLatt**. In fact, take any $L = (L, *_1, *_2, \dots, *_n) \in$ **wDn-Latt** and any homomorphism $f : W \longrightarrow L$, then ker($q) \subseteq$ ker(f). For any $(x, y) \in$ ker(q), there are $\alpha, \beta \in S$ such that $x \in W_\alpha, y \in W_\beta$. Then there is $\gamma \in S$ such that $\alpha \leq \gamma, \beta \leq \gamma$, $q(x) = [\varphi_{\alpha,\gamma}(x)]_\Lambda = [\varphi_{\beta,\gamma}(y)]_\Lambda = q(y)$ so, $x \circ_1 (x \circ_2 (\dots (x \circ_{n-1} (x \circ_n z)) \dots)) =$ $y \circ_1 (y \circ_2 (\dots (y \circ_{n-1} (y \circ_n z)) \dots))$, where *z* is an arbitrary element of W_γ . Since *f* is a homomorphism and each element of *L* satisfies the generalized absorption law, $f(x) = f(x) *_1 (f(x) *_2 (\dots (f(x) *_{n-1} (f(x) *_n f(z))) \dots)) = f(y) *_1$ $(f(y) *_2 (\dots (f(y) *_{n-1} (f(y) *_n f(z))) \dots)) = f(y)$; therefore $(x, y) \in$ ker(f). So by the Fundamental Theorem of Factorization, there is a unique homomorphism $\overline{f} : W/\Lambda \longrightarrow L$ with $\overline{f} \circ q = f$. Hence **wDn-Latt** is a reflective subcategory of **wDn-SLatt**. □

Corollary 3.7. The category **wDn-Latt** is closed under the formation of limits in the category **wDn-SLatt**.

Note that W/Λ is the direct limit of the following direct system ((S, \leq), { $W_{\alpha} \mid \alpha \in S$ }, { $\varphi_{\alpha,\beta} \mid \alpha \leq \beta$ }).

Then we have the following corollary, directly.

Corollary 3.8. If W = (W, F) is a finite weak distributive n-semilattice, then $W_p \cong W/\Lambda$, where p is the largest element of (S, \leq) .

References

 J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley Sons, Inc, New York, 1990.

236

- [2] B. Davey and H. Priestley, Introduction to Lattices and Order, Combridge University Press, New York, 1990.
- [3] J. Galuszka, Generalized absorption laws in bisemilattices, Algebra Universalis, 19(1984), 304-318.
- [4] G. Grätzer, Universal Algebra, 2nd ed. Springer-Verlag, New York, 1970.
- [5] S. S. Hong and Y. H. Hong, Abstract Algebra, Towers, Seoul, 1976.
- [6] A. Knoeble and A. Romanowska, *Distributive multisemilattices*, Dissertationes Mathematicae, CCCIX(1991), 4-42.
- [7] R. Padmanabhan, regular identities in lattices, Trans. Amer. Math. Soc., 158(1971), 179-188.
- [8] J. Plonka, On distributive quasilattices, Fund. Math., 60(1967), 191-200.
- [9] J. Plonka, On distributive n-lattices and n-quasilattices, Fund. Math., 62(1967), 293-300.
- [10] J. Plonka, Some remarks on sums of direct systems of algebras, Fund. Math., 62(1968), 301-308.