Weak Distributive n-Semilattices and n-Lattices

SEON-Ju Lim
Department of Mathematics \& Statistics, Sookmyung Women's University, Seoul 140-742, Korea
e-mail: sjlim@sookmyung.ac.kr

Abstract. We define weak distributive n-semilattices and n-lattices, using variants of the absorption law and those of the distributive law. From a weak distributive n-semilattice, we construct direct system of subalgebras which are weak distributive n-lattices and show that its direct limit is a reflection of the category $\mathbf{w D} \mathbf{n}$-SLatt of the weak distributive n-semilattices.

1. Introduction

A semilattice is an algebra, $S=(S, \vee)$, with one binary operation \vee that is idempotent, commutative and associative, that is, the following identities hold in S :

$$
\begin{array}{rlrl}
x \vee x & =x & & \text { (idempotence), } \\
x \vee y & =y \vee x & & \text { (commutativity), } \\
(x \vee y) \vee z & =x \vee(y \vee z) & \text { (associativity). }
\end{array}
$$

An algebra (B, \vee, \wedge) with two binary operations \vee and \wedge is called a bisemilattice if both of its reducts (B, \vee) and (B, \wedge) are semilattices. This notion was introduced by J. Plonka in [8] under the name quasilattice. However, it is called bisemilattice by other author ([3], [6], [7]). In particular, a bisemilattice is distributive if it satisfies the following two distributivity:

$$
\begin{aligned}
& x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \\
& x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
\end{aligned}
$$

Plonka has generalized distributive bisemilattice to distributive n-semilattice and distributive n-lattice $([9])$. A distributive n-semilattice (S, F) which is an algebra with a family $F=\left\{o_{i} \mid i \in[n]\right\}$ of n binary semilattice operations on a common set S in which each pair of semilattice operations satisfy both distributive laws. A distributive n-semilattice (S, F) is called a distributive n-lattice if it satisfies

Received January 16, 2006.
2000 Mathematics Subject Classification: 06A12, 06B99, 18A30, 18A40.
Key words and phrases: n-semilattice, n-lattice, weak distributive, generalized absorption law, reflection, direct limit.
moreover the following generalized absorption law for the sequence $I=(1,2, \cdots, n)$ of indices of $F=\left\{\circ_{i} \mid i \in[n]\right\}$

$$
a \circ_{1}\left(a \circ_{2}\left(\cdots\left(a \circ_{n-1}\left(a \circ_{n} b\right)\right) \cdots\right)\right)=a .
$$

In 1971, R. Padmanbhan define a weak distributive bisemilattice, which is a bisemilattice satisfying the weak distributivity (it was studied under the name quasilattice in [7]):

$$
((a \wedge b) \vee c) \wedge(b \vee c)=(a \wedge b) \vee c \text { and }((a \vee b) \wedge c) \vee(b \wedge c)=(a \vee b) \wedge c
$$

In this paper, we are concerned with categorical properties of certain algebras which we call weak distributive n-semilattices. These algebras generalize weak distributive bisemilattices. A weak distributive n-semilattice is an algebra with a family of n binary semilattice operations on a common underlying set which are mutually weak distributive. A weak distributive n-semilattice will be called a weak distributive n-lattice, if it satisfies the generalized absorption law, which generalizes the absorption law for lattices. Furthermore, weak distributive n-semilattices (or weak distributive n-lattices) generalize distributive n-semilattices (or distributive n-lattices, respectively). We show that every weak distributive n-semilattices has a partition consisting of weak distributive n-lattices and then the family of week distributive n-lattices in the partition forms a direct system in the category $\mathbf{w D} \mathbf{D}$-Latt of weak distributive n-lattices and homomorphisms. Furthermore, we prove that its direct limit gives rise to the reflection. For the terminology not introduced in the paper, we refer to [1] for the category theory, [2] for the ordered sets and [4], [5] for the abstract algebra.

2. Weak distributive n-semilattices

Let us start with a definition of weak distributive n-semilattice which is a generalization of both weak distributive bisemilattice and distributive n-semilattice.

Definition 2.1. An algebra $W=(W, F)$ is called a weak distributive n-semilattice if it has a family $F=\left\{o_{i} \mid i \in[n]\right\}$ consisting of n binary operations which satisfy the following equations for any $i, j \in I$:

$$
\begin{array}{rlrl}
a \circ_{i} a & =a & & \text { (idempotence), } \\
a \circ_{i} b & =b \circ_{i} a & \text { (commutativity), } \\
\left(a \circ_{i} b\right) \circ_{i} c & =a \circ_{i}\left(b \circ_{i} c\right) & \text { (associativity), } \\
\left(\left(a \circ_{i} b\right) \circ_{j} c\right) \circ_{i}\left(b \circ_{j} c\right) & =\left(a \circ_{i} b\right) \circ_{j} c & \text { (weak distributivity). }
\end{array}
$$

A weak distributive n-semilattice is called a weak distributive n-lattice if it satisfies the generalized absorption law:

$$
\begin{equation*}
a \circ_{\sigma(1)}\left(a \circ_{\sigma(2)}\left(\cdots\left(a \circ_{\sigma(n-1)}\left(a \circ_{\sigma(n)} b\right)\right) \cdots\right)\right)=a \tag{*}
\end{equation*}
$$

for any permutation $\sigma \in \operatorname{Sym}(n)$.
In the case $n=2$, it is clear that a weak distributive n-semilattice is a weak distributive bisemilattice and a weak distributive n-lattice is a lattice. In a weak distributive n-lattice, the condition $(*)$ can be reduced to the condition

$$
a \circ_{1}\left(a \circ_{2}\left(\cdots\left(a \circ_{n-1}\left(a \circ_{n} b\right)\right) \cdots\right)\right)=a
$$

because it can be easily shown by the weak distributivity. A distributive n-semilattice (or n-lattice) is a weak distributive n-semilattice (or n-lattice, respectively). But a weak distributive n-semilattice (or n-lattice) need not be a distributive n-semilattice (or n-lattices, respectively).

From now on, an n-semilattice $W=(W, F)$ with a family $F=\left\{o_{i} \mid i \in[n]\right\}$ of n semilattice operations will be denoted by $W=(W, F)$ or W, simply.

Remark 2.2.

(1) It is easy to see that an n-semilattice $W=(W, F)$ is weak distributive if and only if $a \circ_{i} b=b$ implies $\left(a \circ_{j} c\right) \circ_{i}\left(b \circ_{j} c\right)=b \circ_{j} c$ for any $j \in[n]$ and any $c \in W$.
(2) Let (W, F) be a weak distributive n-semilattice. If $a \circ_{i} b=a$ and $c \circ_{i} d=c$, then for any $j \in[n]$, we have by (1),

$$
\left(a \circ_{j} c\right) \circ_{i}\left(b \circ_{j} d\right)=a \circ_{j} c
$$

Now we obtain some properties of weak distributive n-semilattices and n lattices, which will be needed in the formation of the direct system in the category $\mathbf{w} \mathbf{D} n$-Latt of weak distributive n-lattices and homomorphisms.

Lemma 2.3. Let $W=(W, F)$ be a weak distributive n-semilattice. Then for any $i, j \in[n]$, the following equations hold.

$$
\begin{align*}
a \circ_{i}\left(b \circ_{j} a\right) & =\left(a \circ_{i} b\right) \circ_{j} a, \tag{1}\\
a \circ_{i}\left(a \circ_{j} b\right) \circ_{i}\left(c \circ_{j} b\right) & =a \circ_{i}\left(c \circ_{j} b\right), \tag{2}\\
a \circ_{i}\left(a \circ_{j} b\right) \circ_{i}\left(a \circ_{j} b \circ_{j} c\right) & =a \circ_{i}\left(a \circ_{j} b \circ_{j} c\right), \tag{3}\\
a \circ_{i} b \circ_{i}\left(a \circ_{j} c\right) & =a \circ_{i} b \circ_{i}\left(b \circ_{j} c\right), \tag{4}\\
a \circ_{i}\left(a \circ_{j}\left(b \circ_{i} c\right)\right) & =a \circ_{i}\left(a \circ_{j} b\right) \circ_{i}\left(a \circ_{j} c\right), \tag{5}\\
a \circ_{i}\left(a \circ_{j}\left(b \circ_{i}\left(b \circ_{j} c\right)\right)\right) & =a \circ_{i}\left(a \circ_{j}\left(c \circ_{i}\left(c \circ_{j} b\right)\right)\right), \tag{6}\\
a \circ_{i}\left(a \circ_{j}\left(b \circ_{i}\left(b \circ_{j} c\right)\right)\right) & =a \circ_{i}\left(a \circ_{j} b\right) \circ_{i}\left(\left(a \circ_{i}\left(a \circ_{j} b\right)\right) \circ_{j} c\right), \tag{7}\\
a \circ_{i} b \circ_{i}\left(\left(a \circ_{i} b\right) \circ_{j} c\right) & =a \circ_{i}\left(a \circ_{j} c\right) \circ_{i} b=a \circ_{i} b \circ_{i}\left(b \circ_{j} c\right), \tag{8}\\
a \circ_{i}\left(a \circ_{j}\left(b \circ_{i}\left(b \circ_{j}\left(a \circ_{i} b\right)\right)\right)\right) & =a \circ_{i}\left(a \circ_{j} b\right) . \tag{9}
\end{align*}
$$

Proof. (1) It follows from the definition of weak distributive n-semilattice.
(2) From the associativity, weak distributivity and (2) of Remark 2.2, we have

$$
\begin{aligned}
a \circ_{i}\left(a \circ_{j} b\right) \circ_{i}\left(c \circ_{j} b\right) & =\left(\left(c \circ_{j} b\right) \circ_{i} a\right) \circ_{i}\left(a \circ_{j} b\right) \\
& =\left(\left(\left(c \circ_{j} b\right) \circ_{i} a\right) \circ_{j}\left(a \circ_{i} b\right)\right) \circ_{i}\left(a \circ_{j} b\right) \\
& =\left(\left(c \circ_{j} b\right) \circ_{i} a\right) \circ_{j}\left(b \circ_{i} a\right)=\left(c \circ_{j} b\right) \circ_{i} a .
\end{aligned}
$$

(3) Equation (3) follows from (2) by the substitution $b=a \circ_{j} b$.
(4) From (2),

$$
\begin{aligned}
a \circ_{i} b \circ_{i}\left(a \circ_{j} c\right) & =a \circ_{i}\left(b \circ_{i}\left(a \circ_{j} c\right)\right) \\
& =a \circ_{i}\left(b \circ_{i}\left(b \circ_{j} c\right) \circ_{i}\left(a \circ_{j} c\right)\right) \\
& =a \circ_{i}\left(b \circ_{j} c\right) \circ_{i} b \circ_{i}\left(a \circ_{j} c\right) \\
& =b \circ_{i}\left(a \circ_{i}\left(a \circ_{j} c\right) \circ_{i}\left(b \circ_{j} c\right)\right) \\
& =b \circ_{i}\left(a \circ_{i}\left(b \circ_{j} c\right)\right) \\
& =a \circ_{i} b \circ_{i}\left(b \circ_{j} c\right) .
\end{aligned}
$$

(5) Using (4) and the weak distributivity, we obtain

$$
\begin{aligned}
a \circ_{i}\left(a \circ_{j} b\right) \circ_{i}\left(a \circ_{j} c\right) & =a \circ_{i}\left(a \circ_{j} b\right) \circ_{i}\left(a \circ_{j} b \circ_{j} c\right) \\
& =a \circ_{i}\left(\left(a \circ_{j} b\right) \circ_{j}\left(\left(a \circ_{j} b\right) \circ_{i} c\right)\right) \\
& =a \circ_{i}\left(\left(a \circ_{j} b\right) \circ_{j}\left(b \circ_{i} c\right) \circ_{j}\left(\left(a \circ_{j} b\right) \circ_{i} c\right)\right) \\
& =a \circ_{i}\left(\left(a \circ_{j} b\right) \circ_{j}\left(b \circ_{i} c\right) \circ_{j}\left(\left(b \circ_{i} c\right) \circ_{i} c\right)\right) \\
& =a \circ_{i}\left(\left(a \circ_{j} b\right) \circ_{j}\left(b \circ_{i} c\right)\right) \\
& =a \circ_{i}\left(a \circ_{j}\left(b \circ_{i} c\right)\right) \circ_{i}\left(\left(a \circ_{j} b\right) \circ_{j}\left(b \circ_{i} c\right)\right) \\
& =a \circ_{i}\left(a \circ_{j}\left(b \circ_{i} c\right)\right) \circ_{i}\left(a \circ_{j} b \circ_{j}\left(b \circ_{i} c\right)\right) \\
& =a \circ_{i}\left(a \circ_{j}\left(b \circ_{i} c\right)\right) .
\end{aligned}
$$

(6) Using (1) and (2), we have

$$
\begin{aligned}
a \circ_{i}\left(a \circ_{j}\left(b \circ_{i}\left(b \circ_{j} c\right)\right)\right) & =a \circ_{i}\left(a \circ_{j} b \circ_{j}\left(b \circ_{i} c\right)\right) \\
& =a \circ_{i}\left(a \circ_{j}\left(b \circ_{i} c\right)\right) \circ_{i}\left(a \circ_{j} b \circ_{j}\left(b \circ_{i} c\right)\right) \\
& =\left(\left(a \circ_{i} b \circ_{i} c\right) \circ_{j} a\right) \circ_{i}\left(a \circ_{j} b \circ_{j}\left(b \circ_{i} c\right)\right) \\
& =a \circ_{j}\left(a \circ_{i} b \circ_{i} c\right),
\end{aligned}
$$

and similarly, $a \circ_{i}\left(a \circ_{j}\left(c \circ_{i}\left(c \circ_{j} b\right)\right)\right)=a \circ_{j}\left(a \circ_{i} b \circ_{i} c\right)$. It is easy to show that equation (7) hold using (1) and (5). Equations (8) and (9) follow from (4) by the substitution $b=a \circ_{i} b$ and (1), respectively. This completes the proof.

Note that a weak distributive n-semilattice $W=(W, F)$ is an algebra of type n. Then we may denote the operations of W by $\circ_{1}, \circ_{2}, \cdots, \circ_{n}$. We observe that for any $k \in[n]$, there is a subsequence $K=\left(i_{1}, i_{2}, \cdots, i_{k}\right)$ of the sequence $I=(1,2, \cdots, n)$.

In the following, we denote $a \circ_{i_{1}}\left(a \circ_{i_{2}}\left(\cdots\left(a \circ_{i_{k-1}}\left(a \circ_{i_{k}} b\right)\right) \cdots\right)\right)$ by $f_{i_{1}, i_{2}, \cdots, i_{k}}(a, b)$ or $f_{K}(a, b)$ for the convenience.

Lemma 2.4. If $W=(W, F)$ is a weak distributive n-semilattice, then for any $i \in[n]$, we have the following equations:
(1) $f_{I}\left(a, b \circ_{i} c\right)=f_{I}(a, b) \circ_{i} f_{I}(a, c)$ and $f_{I}\left(a \circ_{i} b, c\right)=f_{I}(a, c) \circ_{i} f_{I}(b, c)$,
(2) $f_{I}\left(a \circ_{i} b, a\right)=a \circ_{i} b=f_{I}\left(a \circ_{i} b, b\right)$,
(3) $f_{K}\left(f_{K}(a, b), c\right)=f_{K}\left(a, f_{K}(b, c)\right)=f_{K}\left(a, f_{K}(c, b)\right)$ for any nonempty subsequence K of I.

Proof. (1) For any $i, k \in[n]$, we denote the subsequences $(1,2, \cdots, i)$ and $(1,2, \cdots, k-1, k+1, \cdots, i)$ of the sequence $I=(1,2, \cdots, n)$ by I_{i} and $I_{i}-\{k\}$, respectively. Using (5) and (8) of Lemma 2.3., we have

$$
\begin{aligned}
f_{I}\left(a, b \circ_{i} c\right) & =f_{I_{n-1}}\left(a, a \circ_{n}\left(b \circ_{i} c\right)\right) \\
& =f_{I_{n-1}-\{i\}}\left(a, a \circ_{i}\left(a \circ_{n}\left(b \circ_{i} c\right)\right)\right) \\
& =f_{I_{n-1}-\{i\}}\left(a, a \circ_{i}\left(a \circ_{n} b\right) \circ_{i}\left(a \circ_{n} c\right)\right) \\
& =f_{I_{n-2}}\left(a,\left(a \circ_{n-1}\left(a \circ_{n} b\right)\right) \circ_{i}\left(a \circ_{n-1}\left(a \circ_{n} c\right)\right)\right) \\
& =f_{I_{n-2}}\left(a, f_{n-1, n}(a, b) \circ_{i} f_{n-1, n}(a, c)\right) \\
& =f_{I_{n-3}}\left(a, a \circ_{n-2}\left(f_{n-1, n}(a, b) \circ_{i} f_{n-1, n}(a, c)\right)\right) \\
& =f_{I_{n-3}}\left(a, f_{n-2, n-1, n}(a, b) \circ_{i} f_{n-2, n-1, n}(a, c)\right) \\
& =a \circ_{i} f_{I-\{i\}}(a, b) \circ_{i} a \circ_{i} f_{I-\{i\}}(a, c) \\
& =f_{I}(a, b) \circ_{i} f_{I}(a, c)
\end{aligned}
$$

and the second part is proved from (8) of Lemma 2.3 and idempotence ;

$$
\begin{aligned}
f_{I}\left(a \circ_{i} b, c\right)= & f_{I_{n-1}-\{i\}}\left(a \circ_{i} b,\left(a \circ_{i} b\right) \circ_{i}\left(\left(a \circ_{i} b\right) \circ_{n} c\right)\right) \\
= & f_{I_{n-1}-\{i\}}\left(a \circ_{i} b,\left(a \circ_{i} b\right) \circ_{i}\left(a \circ_{n} c\right) \circ_{i}\left(a \circ_{i} b\right) \circ_{i}\left(b \circ_{n} c\right)\right) \\
= & f_{I_{n-1}\left(a \circ_{i} b,\left(a \circ_{n} c\right) \circ_{i}\left(b \circ_{n} c\right)\right)}=f_{I_{n-1}}\left(a \circ_{i} b, a \circ_{n} c\right) \circ_{i} f_{I_{n-1}}\left(a \circ_{i} b, b \circ_{n} c\right) \\
= & f_{I_{n-2}}\left(a \circ_{i} b,\left(a \circ_{i} b\right) \circ_{n-1}\left(a \circ_{n} c\right)\right) \circ_{i} f_{I_{n-2}}\left(a \circ_{i} b,\left(a \circ_{i} b\right) \circ_{n-1}\left(b \circ_{n} c\right)\right) \\
= & f_{I_{n-2}-\{i\}}\left(a \circ_{i} b, a \circ_{i} b \circ_{i}\left(\left(a \circ_{i} b\right) \circ_{n-1}\left(a \circ_{n} c\right)\right)\right) \\
& \circ_{i} f_{I_{n-2}-\{i\}}\left(a \circ_{i} b, a \circ_{i} b \circ_{i}\left(\left(a \circ_{i} b\right) \circ_{n-1}\left(b \circ_{n} c\right)\right)\right) \\
= & f_{I_{n-2}-\{i\}}\left(a \circ_{i} b, a \circ_{i} b \circ_{i}\left(a \circ_{n-1}\left(a \circ_{n} c\right)\right)\right) \\
& \circ_{i} f_{I_{n-2}-\{i\}}\left(a \circ_{i} b, a \circ_{i} b \circ_{i}\left(b \circ_{n-1}\left(b \circ_{n} c\right)\right)\right) \\
= & \left.f_{\left.I_{n-3}\left(a \circ_{i} b,\left(a \circ_{i} b\right)\right)_{n-2}\left(a \circ_{n-1}\left(a \circ_{n} c\right)\right)\right)} \quad \begin{array}{rl}
\circ_{i} f_{I_{n-3}}\left(a \circ_{i} b, a \circ_{i} b \circ_{n-2}\left(b \circ_{n-1}\left(b \circ_{n} c\right)\right)\right)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f_{I_{n-3}-\{i\}}\left(a \circ_{i} b,\left(a \circ_{i} b\right) \circ_{i}\left(a \circ_{n-2}\left(a \circ_{n-1}\left(a \circ_{n} c\right)\right)\right)\right) \\
& \quad \circ_{i} f_{I_{n-3}-\{i\}}\left(a \circ_{i} b,\left(a \circ_{i} b\right) \circ_{i}\left(b \circ_{n-2}\left(b \circ_{n-1}\left(b \circ_{n} c\right)\right)\right)\right) \\
& \vdots \\
& =f_{1, i}\left(a \circ_{i} b, f_{I-\{1, i\}}(a, c)\right) \circ_{i} f_{1, i}\left(a \circ_{i} b, f_{I-\{1, i\}}(b, c)\right) \\
& =\left(a \circ_{i} b\right) \circ_{i}\left(\left(a \circ_{i} b\right) \circ_{1} f_{I-\{1, i\}}(a, c)\right) \\
& \quad \circ_{i}\left(a \circ_{i} b\right) \circ_{i}\left(\left(a \circ_{i} b\right) \circ_{1} f_{I-\{1, i\}}(b, c)\right) \\
& =\left(a \circ_{i} b \circ_{i} a \circ_{1} f_{I-\{1, i\}}(a, c)\right) \circ_{i}\left(a \circ_{i} b \circ_{i} b \circ_{1} f_{I-\{1, i\}}(b, c)\right) \\
& =a \circ_{i}\left(a \circ_{1} f_{I-\{1, i\}}(a, c)\right) \circ_{i} b \circ_{i}\left(b \circ_{1} f_{I-\{1, i\}}(b, c)\right) \\
& = \\
& f_{I}(a, c) \circ_{i} f_{I}(b, c) .
\end{aligned}
$$

(2) From the weak distributivity and idempotence, we have

$$
\begin{aligned}
f_{I}\left(a \circ_{i} b, b\right) & =f_{1,2, \cdots, n-1}\left(a \circ_{i} b,\left(a \circ_{i} b\right) \circ_{n} b\right) \\
& =f_{1,2, \cdots, i-1, i+1, \cdots, n}\left(a \circ_{i} b,\left(a \circ_{i} b\right) \circ_{i} b\right) \\
& =a \circ_{i} b .
\end{aligned}
$$

Interchange roles of a and $b, f_{I}\left(a \circ_{i} b, a\right)=a \circ_{i} b$ holds.
(3) First, we show that for any nonempty subsequence $K=\left(i_{1}, i_{2}, \cdots, i_{k}\right)$ of $(1,2, \cdots, n)$,

$$
\begin{aligned}
f_{i_{1}, i_{2}, \cdots, i_{k}}\left(a, f_{i_{1}, i_{2}, \cdots, i_{k}}(b, c)\right) & =a \circ_{i_{1}}\left(a \circ_{i_{2}}\left(\cdots\left(a_{i_{k-1}}\left(a \circ_{i_{k}} b \circ_{i_{k}} c\right)\right) \cdots\right)\right) \\
& =f_{i_{1}, i_{2}, \cdots, i_{k}}\left(a, b \circ_{i_{k}} c\right) .
\end{aligned}
$$

We use the induction on k. If $k=2$, then by (5), (2) of Lemma 2.3.,

$$
\begin{aligned}
f_{i_{1}, i_{2}}\left(a, f_{i_{1}, i_{2}}(b, c)\right) & =a \circ_{i_{1}}\left(a \circ_{i_{2}}\left(b \circ_{i_{1}}\left(b \circ_{i_{2}} c\right)\right)\right) \\
& =a \circ_{i_{1}}\left(a \circ_{i_{2}} b\right) \circ_{i_{1}}\left(a \circ_{i_{2}} b \circ_{i_{2}} c\right)=a \circ_{i_{1}}\left(a \circ_{i_{2}} b \circ_{i_{2}} c\right) \\
& =f_{i_{1}, i_{2}}\left(a, b \circ_{i_{2}} c\right) .
\end{aligned}
$$

Assume that the above statement is true for all sequences of indices with the length \leq $k-1$. Let $K=\left(i_{1}, i_{2}, \cdots, i_{k}\right)$ and $J=\left(i_{1}, i_{2}, \cdots, i_{k-1}\right)$. Then by induction hypothesis, (5) and (3) of Lemma 2.3, we have

$$
\begin{aligned}
f_{K}\left(a, f_{K}(b, c)\right) & =f_{K}\left(a, f_{J}\left(b, b \circ_{i_{k}} c\right)\right) \\
& =a \circ_{i_{k}} f_{J}\left(a, f_{J}\left(b, b \circ_{i_{k}} c\right)\right) \\
& =a \circ_{i_{k}} f_{J}\left(a, b \circ_{i_{k-1}}\left(b \circ_{i_{k}} c\right)\right) \\
& =f_{J}\left(a, a \circ_{i_{k}}\left(b \circ_{i_{k-1}}\left(b \circ_{i_{k}} c\right)\right)\right) \\
& =f_{J}\left(a,\left(a \circ_{i_{k}} b\right) \circ_{i_{k-1}}\left(a \circ_{i_{k}} b \circ_{i_{k}} c\right)\right) \\
& =f_{J}\left(a, a \circ_{i_{k}} b \circ_{i_{k}} c\right) \\
& =f_{K}\left(a, b \circ_{i_{k}} c\right) .
\end{aligned}
$$

Hence $f_{K}\left(a, f_{K}(b, c)\right)=f_{K}\left(a, b \circ_{i_{k}} c\right)=f_{K}\left(a, f_{K}(c, b)\right)$. Also, we show that

$$
\begin{aligned}
f_{K}\left(f_{K}(a, b), c\right) & =a \circ_{i_{1}}\left(a \circ_{i_{2}}\left(\cdots\left(a \circ_{i_{k-1}}\left(a \circ_{i_{k}} b \circ_{i_{k}} c\right)\right) \cdots\right)\right) \\
& =f_{K}\left(a, b \circ_{i_{k}}, c\right)
\end{aligned}
$$

First, we claim that for index $J=\left(i_{1}, i_{2}, \cdots, i_{n}\right)(2 \leq n \leq k-1)$

$$
\begin{aligned}
f_{J}\left(f_{K}(a, b), c\right) & =a \circ_{i_{1}}\left(a \circ_{i_{2}}\left(\cdots\left(a \circ_{i_{n}} f_{K-J}(a, b) \circ_{i_{n}} c\right) \cdots\right)\right) \\
& =f_{J}\left(a, f_{K-J}(a, b) \circ_{i_{n}} c\right)
\end{aligned}
$$

We use the induction on n. Let $S=\left(i_{2}, i_{3}, \cdots, i_{k}\right)$ and $T=\left(i_{3}, \cdots, i_{k}\right)$. If $n=2$, then by (7), (5) and (3) of Lemma 2.3,

$$
\begin{aligned}
f_{i_{1}, i_{2}}\left(f_{K}(a, b), c\right) & =f_{K}(a, b) \circ_{i_{1}}\left(f_{K}(a, b) \circ_{i_{2}} c\right) \\
& =\circ_{i_{1}} f_{S}(a, b) \circ_{i_{1}}\left(\left(a \circ_{i_{1}} f_{S}(a, b)\right) \circ_{i_{2}} c\right) \\
& =a \circ_{i_{1}}\left(a \circ_{i_{2}} f_{T}(a, b)\right) \circ_{i_{1}}\left(\left(a \circ_{i_{1}}\left(a \circ_{i_{2}} f_{T}(a, b)\right)\right) \circ_{i_{2}} c\right) \\
& =a \circ_{i_{1}}\left(a \circ_{i_{2}}\left(f_{T}(a, b) \circ_{i_{1}}\left(f_{T}(a, b) \circ_{i_{2}} c\right)\right)\right) \\
& =a \circ_{i_{1}}\left(a \circ_{i_{2}} f_{T}(a, b)\right) \circ_{i_{1}}\left(a \circ_{i_{2}} f_{T}(a, b) \circ_{i_{2}} c\right) \\
& =a \circ_{i_{1}}\left(a \circ_{i_{2}} f_{T}(a, b) \circ_{i_{2}} c\right) \\
& =a \circ_{i_{1}}\left(a \circ_{i_{2}} f_{K-\left\{i_{1}, i_{2}\right\}}(a, b) \circ_{i_{2}} c\right) \\
& =f_{i_{1}, i_{2}}\left(a, f_{K-\left\{i_{1}, i_{2}\right\}}(a, b) \circ_{i_{2}} c\right) .
\end{aligned}
$$

Assume that

$$
\begin{aligned}
f_{J}\left(f_{K}(a, b), c\right) & =a \circ_{i_{1}}\left(a \circ_{i_{2}}\left(\cdots\left(a \circ_{i_{n}} f_{K-J}(a, b) \circ_{i_{n}} c\right) \cdots\right)\right) \\
& =f_{J}\left(a, f_{K-J}(a, b) \circ_{i_{n}} c\right)
\end{aligned}
$$

holds for all $n \leq k-2$. Then by the induction hypothesis, (1) and (3) of Lemma 2.3, we have

$$
\begin{aligned}
f_{i_{1}, \cdots, i_{k-1}}\left(f_{K}(a, b), c\right) & =f_{i_{1}, \cdots, i_{k-2}}\left(f_{K}(a, b), c\right) \circ_{i_{k-1}} f_{K}(a, b) \\
& =f_{K}(a, b) \circ_{i_{k-1}} f_{i_{1}, \cdots, i_{k-2}}\left(a, f_{K-J}(a, b) \circ_{i_{k-2}} c\right) \\
& =a \circ_{i_{k-1}} f_{i_{1}, \cdots, i_{k-2}}\left(a, a \circ_{i_{k}} b\right) \circ_{i_{k-1}} f_{i_{1}, \cdots, i_{k-2}}\left(a, f_{K-J}(a, b) \circ_{i_{k-2}} c\right) \\
& =a \circ_{i_{k-1}} f_{i_{1}, \cdots, i_{k-2}}\left(a,\left(a \circ_{i_{k}} b\right) \circ_{i_{k-1}}\left(f_{K-J}(a, b) \circ_{i_{k-2}} c\right)\right) \\
& =f_{i_{1}, \cdots, i_{k-2}}\left(a, a \circ_{i_{k-1}}\left(a \circ_{i_{k}} b\right) \circ_{i_{k-1}}\left(\left(a \circ_{i_{k-1}}\left(a \circ_{i_{k}} b\right)\right) \circ_{i_{k-2}} c\right)\right) \\
& =f_{i_{1}, \cdots, i_{k-2}}\left(a,\left(a \circ_{i_{k-1}}\left(a \circ_{i_{k}} b\right)\right) \circ_{i_{k-2}}\left(a \circ_{i_{k-1}}\left(a \circ_{i_{k}} b\right) \circ_{i_{k-1}} c\right)\right) \\
& =f_{i_{1}, \cdots, i_{k-2}}\left(a, a \circ_{i_{k-1}}\left(a \circ_{i_{k}} b\right) \circ_{i_{k-1}} c\right) \\
& =f_{i_{1}, \cdots, i_{k-1}}\left(a, f_{K-\left\{i_{1}, i_{2}, \cdots, i_{k-1}\right\}}(a, b) \circ_{i_{k-1}} c\right) .
\end{aligned}
$$

Using the above claim, we have

$$
f_{i_{1}, i_{2}, \cdots, i_{k}}\left(f_{K}(a, b), c\right)=f_{K}\left(a, b \circ_{i_{k}} c\right) .
$$

This completes the proof.

3. $\mathbf{w} \mathbf{D} n$-SLatt and $\mathrm{wD} n$-Latt

In this section, we prove that a weak distributive n-semilattice has a partition consisting of weak distributive n-lattices and which form a direct system in the category $\mathbf{w} \mathbf{D} n$-Latt of weak distributive n-lattices and homomorphisms. Furthermore, we show that the direct limit of this direct system gives to the reflection. Firstly, for a weak distributive n-semilattice W, we have a partition of weak distributive n-lattices of W by the following equivalence relation.

Proposition 3.1. Let $W=(W, F)$ be a weak distributive n-semilattice. Define a binary relation θ on W as follows:

$$
(a, b) \in \theta \text { if and only if } f_{I}(a, b)=a \text { and } f_{I}(b, a)=b
$$

where $I=(1,2, \cdots, n)$. Then θ is an equivalence relation and each equivalence class $\theta(x)$ of x is a subalgebra of W. Moreover, each $\theta(x)$ is a weak distributive n-lattice.
Proof. Clearly, θ is reflexive and symmetric. Let $(a, b),(b, c) \in \theta$. Then

$$
f_{I}(a, b)=a, f_{I}(b, a)=b=f_{I}(b, c) \text { and } f_{I}(c, b)=c
$$

Using (3) of Lemma 2.4, we have $(a, c) \in \theta ; \theta$ is transitive. Then θ is an equivalence relation. It remains to show that each $\theta(x)$ is a subalgebra which is a weak distributive n-lattice. Take any $a, b \in \theta(x)$. Then

$$
f_{I}(a, x)=a, f_{I}(x, a)=x=f_{I}(x, b) \text { and } f_{I}(b, x)=b
$$

Thus for any $j \in[n]$,

$$
\begin{aligned}
& f_{I}\left(a \circ_{j} b, x\right)=f_{I}(a, x) \circ_{j} f_{I}(b, x)=a \circ_{j} b \\
& f_{I}\left(x, a \circ_{j} b\right)=f_{I}(x, a) \circ_{j} f_{I}(x, b)=x \circ_{j} x=x
\end{aligned}
$$

$a \circ_{j} b \in \theta(x)$. So $\theta(x)$ is a subalgebra of W. By the definition of θ and Lemma 2.4., $\theta(x)$ satisfies the generalized absorption law and thus each $\theta(x)$ is a weak distributive n-lattice.

Proposition 3.1 amounts to saying that for a weak distributive n-semilattice $W=(W, F)$ we have a partition $\left\{W_{\alpha} \mid \alpha \in S\right\}$ of subalgebras of W which are weak distributive n-lattices. Here we consider a binary relation \leq on the set S of indices of the set $\left\{W_{\alpha} \mid \alpha \in S\right\}$ defined as follows :
$\alpha \leq \beta$ if and only if there are $a \in W_{\alpha}, b \in W_{\beta}$ such that $f_{I}(b, a)=b$.
Then (S, \leq) is a join semilattice.
For $\alpha \leq \beta$ let $\varphi_{\alpha, \beta}: W_{\alpha} \longrightarrow W_{\beta}$ be the map defined by $\varphi_{\alpha, \beta}(a)=f_{I}(a, b)$, where b is an arbitrary element of W_{β}. Thus we have a family of homomorphisms
$\left\{\varphi_{\alpha, \beta} \mid \alpha \leq \beta\right\}$. Moreover, for $\alpha \leq \beta$ and $\beta \leq \gamma, \varphi_{\alpha, \beta}(a)=f_{I}(a, b)$ and $\varphi_{\beta, \gamma}(b)=$ $f_{I}(b, c)$, where $b \in W_{\beta}$ and $c \in W_{\gamma}$, and thus

$$
\begin{aligned}
\varphi_{\beta, \gamma} \circ \varphi_{\alpha, \beta}(a) & =\varphi_{\beta, \gamma}\left(f_{I}(a, b)\right)=f_{I}\left(f_{I}(a, b), c\right) \\
& =f_{I}\left(a, f_{I}(b, c)\right)=f_{I}\left(a, f_{I}(c, b)\right) \\
& =f_{I}(a, c)=\varphi_{\alpha, \gamma}(a)
\end{aligned}
$$

and

$$
\varphi_{\alpha, \alpha}(a)=f_{I}(a, a)=a=1_{W_{\alpha}}(a)
$$

Then we obtain a direct system(see [4]) $\left((S, \leq),\left\{W_{\alpha} \mid \alpha \in S\right\},\left\{\varphi_{\alpha, \beta} \mid \alpha \leq \beta\right\}\right)$ of weak distributive n-lattices, where $\left\{W_{\alpha} \mid \alpha \in S\right\}$ is the partition of the given weak distributive n-semilattice W, given by Proposition 3.1.
Let $S(W)=\left(\bigcup_{\alpha \in S} W_{\alpha}, *_{1}, *_{2}, \cdots, *_{n}\right)$ be an algebra with n binary operations such that for $x \in W_{\alpha}, y \in W_{\beta}, x *_{i} y=\varphi_{\alpha, \gamma}(x) \circ_{i} \varphi_{\beta, \gamma}(y)$, where $\gamma=\alpha \vee \beta$ in the join semilattice (S, \leq). Then one has the following Proposition :

Proposition 3.2. For any weak distributive n-semilattice $W=\left(W, \circ_{1}, \circ_{2}, \cdots, \circ_{n}\right)$, W and $S(W)$ are identical.
Proof. For any $x, y \in W$, assume that $x \in W_{\alpha}, y \in W_{\beta}$ and let $\gamma=\alpha \vee \beta$, then $z=x \circ_{i} y \in W_{\gamma}$, by the above argument. Then $x *_{i} y=\varphi_{\alpha, \gamma}(x) \circ_{i} \varphi_{\beta, \gamma}(y)=$ $f_{I}(x, z) \circ_{i} f_{I}(y, z)=f_{I}\left(x \circ_{i} y, z\right)=f_{I}(z, z)=z=x \circ_{i} y$ for all $i \in[n]$.

From the definition of homomorphism $\varphi_{\alpha, \beta}$ and Proposition 3.2, we have the following theorem:

Theorem 3.3. For a weak distributive n-semilattice $W=\left(W, \circ_{1}, \circ_{2}, \cdots, \circ_{n}\right)$, let $S(W)=\left(\bigcup_{\alpha \in S} W_{\alpha}, *_{1}, *_{2}, \cdots, *_{n}\right)=\left(W, \circ_{1}, \circ_{2}, \cdots, \circ_{n}\right)$ in the above Proposition 3.2. Define a binary relation Λ on $S(W)$ by $(x, y) \in \Lambda$ if and only if $x \in W_{\alpha}$, $y \in W_{\beta}$ for some $\alpha, \beta \in S$ and there exists $\gamma \in S$ such that $\alpha \leq \gamma, \beta \leq \gamma$, $\varphi_{\alpha, \gamma}(x)=\varphi_{\beta, \gamma}(y)$, i.e., $f_{I}(x, z)=f_{I}(y, z)$, where z is an arbitrary element of W_{γ}. Then the relation Λ is a congruence on $S(W)$.

The following theorem follows from Theorem 3.3.
Theorem 3.4. The quotient algebra $\left(S(W) / \Lambda, *_{1}, *_{2}, \cdots, *_{n}\right)$ of $S(W)$ is a weak distributive n-lattice.
Proof. It is enough to show that $S(W) / \Lambda$ satisfies the generalized absorption law. Let $x \in W_{\alpha}$ and $y \in W_{\beta}$ for some $\alpha, \beta \in S$, then there exists $\gamma \in S$ such that $\alpha, \beta \leq \gamma$. So

$$
\begin{aligned}
& {[x]_{\Lambda} *_{1}\left([x]_{\Lambda} *_{2}\left(\cdots\left([x]_{\Lambda} *_{n-1}\left([x]_{\Lambda} *_{n}[y]_{\Lambda}\right)\right) \cdots\right)\right) } \\
= & {\left[\varphi_{\alpha, \gamma}(x) \circ_{1}\left(\varphi_{\alpha, \gamma}(x) \circ_{2}\left(\cdots\left(\varphi_{\alpha, \gamma}(x) \circ_{n-1}\left(\varphi_{\alpha, \gamma}(x) \circ_{n} \varphi_{\beta, \gamma}(y)\right)\right) \cdots\right)\right)\right]_{\Lambda} } \\
= & {\left[\varphi_{\alpha, \gamma}(x)\right]_{\Lambda}=[x]_{\Lambda} }
\end{aligned}
$$

Hence $S(W) / \Lambda$ is a weak distributive n-lattice.
As the following terminologies are refer to [4], we obtain the following facts:
Remark 3.5. For a weak distributive n-semilattice $W=\left(W, \circ_{1}, \circ_{2}, \cdots, \circ_{n}\right), W$ and $S(W)$ are identical. Thus, $S(W) / \Lambda$ may be viewed as a quotient algebra of W. In fact, W / Λ is the direct limit of the direct system

$$
\left((S, \leq),\left\{W_{\alpha} \mid \alpha \in S\right\},\left\{\varphi_{\alpha, \beta} \mid \alpha \leq \beta\right\}\right)
$$

The class of weak distributive n-semilattices and homomorphisms between them forms a category, which will be denoted by $\mathbf{w D} n$-SLatt, and the class of weak distributive n-lattices forms a full subcategory of $\mathbf{w D} n$-SLatt, which will be denoted by $\mathbf{w D} n$-Latt.
Theorem 3.6. The category $\mathbf{w D} \mathbf{D}$-Latt is a reflective subcategory of the category wD n-SLatt.
Proof. For a weak distributive n-semilattice $W=\left(W, \circ_{1}, \circ_{2}, \cdots, \circ_{n}\right)$, let q : $W \longrightarrow W / \Lambda$ be the quotient homomorphism, where Λ is the congruence given in Theorem 3.3. Then $(q, W / \Lambda)$ is the $\mathbf{w} \mathbf{D} n$-Latt-reflection of $W \in \mathbf{w} \mathbf{D} n$-SLatt. In fact, take any $L=\left(L, *_{1}, *_{2}, \cdots, *_{n}\right) \in \mathbf{w D} n$-Latt and any homomorphism $f: W \longrightarrow L$, then $\operatorname{ker}(q) \subseteq \operatorname{ker}(f)$. For any $(x, y) \in \operatorname{ker}(q)$, there are $\alpha, \beta \in S$ such that $x \in W_{\alpha}, y \in W_{\beta}$. Then there is $\gamma \in S$ such that $\alpha \leq \gamma, \beta \leq \gamma$, $q(x)=\left[\varphi_{\alpha, \gamma}(x)\right]_{\Lambda}=\left[\varphi_{\beta, \gamma}(y)\right]_{\Lambda}=q(y)$ so, $x \circ_{1}\left(x \circ_{2}\left(\cdots\left(x \circ_{n-1}\left(x \circ_{n} z\right)\right) \cdots\right)\right)=$ $y \circ_{1}\left(y \circ_{2}\left(\cdots\left(y \circ_{n-1}\left(y \circ_{n} z\right)\right) \cdots\right)\right)$, where z is an arbitrary element of W_{γ}. Since f is a homomorphism and each element of L satisfies the generalized absorption law, $f(x)=f(x) *_{1}\left(f(x) *_{2}\left(\cdots\left(f(x) *_{n-1}\left(f(x) *_{n} f(z)\right)\right) \cdots\right)\right)=f(y) *_{1}$ $\left(f(y) *_{2}\left(\cdots\left(f(y) *_{n-1}\left(f(y) *_{n} f(z)\right)\right) \cdots\right)\right)=f(y)$; therefore $(x, y) \in \operatorname{ker}(f)$. So by the Fundamental Theorem of Factorization, there is a unique homomorphism $\bar{f}: W / \Lambda \longrightarrow L$ with $\bar{f} \circ q=f$. Hence $\mathbf{w D} \mathbf{D}$-Latt is a reflective subcategory of wD n-SLatt.

Corollary 3.7. The category $\mathbf{w} \mathbf{D} n$-Latt is closed under the formation of limits in the category $\mathbf{w D}$ - n-SLatt.

Note that W / Λ is the direct limit of the following direct system

$$
\left((S, \leq),\left\{W_{\alpha} \mid \alpha \in S\right\},\left\{\varphi_{\alpha, \beta} \mid \alpha \leq \beta\right\}\right)
$$

Then we have the following corollary, directly.
Corollary 3.8. If $W=(W, F)$ is a finite weak distributive n-semilattice, then $W_{p} \cong W / \Lambda$, where p is the largest element of (S, \leq).

References

[1] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley Sons, Inc, New York, 1990.
[2] B. Davey and H. Priestley, Introdution to Lattices and Order, Combridge University Press, New York, 1990.
[3] J. Galuszka, Generalized absorption laws in bisemilattices, Algebra Universalis, 19(1984), 304-318.
[4] G. Grätzer, Universal Algebra, 2nd ed. Springer-Verlag, New York, 1970.
[5] S. S. Hong and Y. H. Hong, Abstract Algebra, Towers, Seoul, 1976.
[6] A. Knoeble and A. Romanowska, Distributive multisemilattices, Dissertationes Mathematicae, CCCIX(1991), 4-42.
[7] R. Padmanabhan, regular identities in lattices, Trans. Amer. Math. Soc., 158(1971), 179-188.
[8] J. Plonka, On distributive quasilattices, Fund. Math., 60(1967), 191-200.
[9] J. Plonka, On distributive n-lattices and n-quasilattices, Fund. Math., 62(1967), 293-300.
[10] J. Plonka, Some remarks on sums of direct systems of algebras, Fund. Math., 62(1968), 301-308.

