On a Generalization of Closed Sets

  • Caldas, Miguel (Departamento de Matematica Aplicada, Universidade Federal Fluminense) ;
  • Ganster, Maximilian (Department of Mathematics, Graz University of Technology) ;
  • Georgiou, Dimitrios N. (Department of Mathematics, University of Patras) ;
  • Jafari, Saeid (Department of Mathematics and Physics, Roskilde University) ;
  • Popa, Valeriu (Department of Mathematics, Bacau University)
  • 투고 : 2004.09.30
  • 발행 : 2007.06.23

초록

It is the objective of this paper to study further the notion of ${\Lambda}_s$-semi-${\theta}$-closed sets which is defined as the intersection of a ${\theta}$-${\Lambda}_s$-set and a semi-${\theta}$-closed set. Moreover, introduce some low separation axioms using the above notions. Also we present and study the notions of ${\Lambda}_s$-continuous functions, ${\Lambda}_s$-compact spaces and ${\Lambda}_s$-connected spaces.

키워드

참고문헌

  1. M. Caldas and S. Jafari, On $\theta$-semigeneralized closed sets in topology, Kyungpook Math. J., 43(2003), 135-148.
  2. S. G. Grossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
  3. G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18(3)(1987), 226-233.
  4. G. Di Maio and T. Noiri, Weak and strong forms of irresolute functions, Rend. Circ. Mat. Palermo (2) Suppl., 18(1988), 255-273.
  5. S. Ganguly and C. K. Basu, Further characterizations of s-closed spaces, Indian J. Pure Appl. Math., 23(9)(1992), 635-641.
  6. M. N. Mukherjee and C. K. Basu, On semi--closed sets, semi-$\theta$-connectedness and some associated mappings, Bull. Cal. Math. Soc., 83(1991), 227-238.
  7. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96. https://doi.org/10.1007/BF02843888