참고문헌
- 이현우, 이관호. 폐암의 조기진단. 영남의대학술지 15(2), 1998
- 최남경, 윤경은, 허대석, 김윤이, 이승미, 박병주. 한국노인약물역학코호트에서 폐암 발생률, 사망률 및 생존율. 1994-1998. 한국역학회지 24(2), 2002
- 강진형. COX 저해제의 항암효과와 암 예방제로서 선택적 COX-2억제제. 암심포지움, 2002(1), 2002
- 지현정. 인체 암 세포주에서 역전사 효소 기능 억제에 의한 Telomerase 활성도와 Telomerase Subunit 발현 변화. 연세대학교 의과학 대학원 석사학위논문, 2001
-
김재동, 윤임중. 정상 및 암세포에서
$SiO_2$ , Crocidolite, MMF가 Telomerase 활성에 미치는 영향. 한국의 산업의학, 36(3), 1997 - 김명유. 정상인과 백혈병에서 telomerase 활성과 그 subunit인 human telomerase RNA (hTR) 및 human telomerase reverse transcriptase (hTRT) 와 p53 단백발현과의 관계에 대한 연구. 고신대학교 내과학 대학원 박사학위논문, 2001
- 전국한의과대학 본초학교수(공편). 본초학. 영림사, 1991
- 배현옥, 임창경, 장선일, 한동민, 안원근, 윤유식, 전병훈, 김원신, 윤용갑. 항 백혈병작용에 관련된 천연물의 자료조사. 동의생리병리학회지 17(3), 2003
- 김수만. 산두근이 PC12 세포 및 뇌해마 신경세포의 Glutamate Excitotoxicity에 미치는 영향. 경희대학교 한의학과 대학원 박사학위논문, 2005
- 朴廷顔. 산두근(Sophora subprostrata)의 화학성분 및 항암활성에 대한 연구. 경희대학고 약학과 대학원 석사학위논문, 2002
- Chui, C.H., Lau, F.Y., Tang, J.C., Kan, K.L., Cheng, G.Y., Wong, R.S., Kok, S.H., Lai, P.B., Ho, R., Gambari, R., Chan, A.S. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophorae Tonkinensis on anti-proliferation and apoptosis of human cancer cell lines. Int J Mol Med, Aug, 16(2):337-341, 2005
- Park, D.I., Choi, H.Y., Kam, C.W., Park, C., Choi, T.H., Lee, W.H. and Choi, Y.H. Wikyungtang inhibits proliferation of A549 human lung cancer cells via inducing apoptosis and suppressing cyclooxygenase-2 activity. Oncol. Rep. 11: 853-856, 2004
- Cerni, C. Telomeres, telomerase, and myc. An update, Mutat. Res. 462: 31-47, 2000 https://doi.org/10.1016/S1383-5742(99)00091-5
- 민홍규. Gerbil의 全腦虛血에 대한 廣豆根의 신경손상방어효능 연구. 경희대학교 한의학과 대학원 석사학위논문, 2002
- 이현임. 廣豆根이 白鼠 中大腦動脈 閉鎖에 의한 局所腦虛血損傷에 미치는 保護效果. 경희대학교 동서의학대학원 신경과학 석사학위논문, 2000
- 김선희, 안종석, 김삼용, 유관희, 안병준. TPA로 야기된 HL-60 세포의 기질부착 저해작용을 이용한 Protein Kinase C 저해 생약의 탐색. 대한암학회, 25(1), 1993
- 김용범. 두경부 편평세포암에서 Human Telomerase Reverse Transcriptase의 발현과 telomerase 활성도와의 상관관계. 경희대학교 의학과 대학원 석사학위논문, 2002
- Harper, J.W. Cyclin dependent kinase inhibitors. Cancer Surv. 29: 91-107, 1997
- Li, Y., Jenkins, C.W., Nichols, M.A. and Xiong, Y. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9: 2261-2268, 1994
- Taylor, W.R. and Stark, G.R. Regulation of the G2/M transition by p53. Oncogene 20: 1803-1815, 2001 https://doi.org/10.1038/sj.onc.1204252
-
Datto, M.B., Yu, Y. and Wang, X.F. Functional analysis of the transforming growth factor
$\beta$ responsive elements in the WAF1/Cip1/p21 promoter. J. Biol. Chem. 270: 28623-28628, 1995 https://doi.org/10.1074/jbc.270.48.28623 - Zeng, Y.X. and El-Deiry, W.S. Regulation of p21WAF1/ CIP1 expression by p53-independent pathways. Oncogene 12: 1557-1564, 1996
- Choi, Y.H., Lee, W.H., Park, K.Y. and Zhang L. p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91: 164-173, 2000 https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
- Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R. and Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature, 366: 701-704, 1993 https://doi.org/10.1038/366701a0
- Tchou, W.W., Rom, W.N. and Tchou-Wong, K.M. Novel form of p21 (WAF1/CIP1/SDI1) protein in phorbol ester-induced G2/M arrest. J. Biol. Chem. 271: 29556-29560, 1996 https://doi.org/10.1074/jbc.271.47.29556
- Dulic, V., Stein, G.H., Far, D.F. and Reed, S.I. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol. Cell Biol. 18: 546-557, 1998 https://doi.org/10.1128/MCB.18.1.546
- Musgrove, E.A., Davison, E.A. and Ormandy, C.J. Role of the CDK Inhibitor p27 (Kip1) in mammary development and carcinogenesis: Insights from knockout mice. J. Mammary Gland Biol. Neoplasia. 9: 55-66, 2004 https://doi.org/10.1023/B:JOMG.0000023588.55733.84
- Giercksky, K.E. COX-2 inhibition and prevention of cancer. Best Pract. Res. Clin. Gastroenterol 15: 821-833, 2001 https://doi.org/10.1053/bega.2001.0237
- Thun, M.J., Henley, S.J. and Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 94: 252-266, 2002 https://doi.org/10.1093/jnci/94.4.252
- Vainio, H. Is COX-2 inhibition a panacea for cancer prevention? Int. J. Cancer 94: 613-614, 2001 https://doi.org/10.1002/ijc.1518
- Dempke, W., Rie, C., Grothey, A. and Schmoll, H.J. Cyclooxygenase-2: a novel target for cancer chemotherapy? J. Cancer Res. Clin. Oncol. 127: 411-417, 2001 https://doi.org/10.1007/s004320000225
-
Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K. and Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-
$\kappa$ B activation. Mutat. Res. pp 480-481, 243-268, 2001 - Sawaoka, H., Tsuji, S., Tsujii, M., Gunawan, E.S., Sasaki, Y., Kawano, S. and Hori, M. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab. Invest. 79: 1469-1477, 1999
-
Yamamoto, Y. and Gaynor, R.B. Therapeutic potential of inhibition of the NF-
$\kappa$ B pathway in the treatment of inflammation and cancer. J. Clin. Invest., 107: 135-142, 2001 https://doi.org/10.1172/JCI11914 - Poole, J.C., Andrews, L.G. and Tollefsbol, T.O. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 269: 1-12, 2001 https://doi.org/10.1016/S0378-1119(01)00440-1
- Vaziri, H., West, M.D., Allsopp, R.C., Davison, T.S., Wu, Y.S., Arrowsmith, C.H., Poirier, G.G. and Benchimol, S. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J. 16: 6018-6033, 1997 https://doi.org/10.1093/emboj/16.19.6018
- Kyo, S. and Inoue, M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy. Oncogene 21: 688-697, 2002 https://doi.org/10.1038/sj.onc.1205163
- Narayan, S., Jaiswal, A.S., Multani, A.S. and Pathak, S. DNA damage-induced cell cycle checkpoints involve both p53-dependent and -independent pathways: role of telomere repeat binding factor 2. Br. J. Cancer 85: 898-901, 2001 https://doi.org/10.1054/bjoc.2001.2002
- Cerni, C. Telomeres, telomerase, and myc. An update, Mutat. Res. 462: 31-47, 2000 https://doi.org/10.1016/S1383-5742(99)00091-5