DOI QR코드

DOI QR Code

Calcium Signaling of Dioleoyl Phosphatidic Acid via Endogenous LPA Receptors: A Study Using HCT116 and HT29 Human Colon Cancer Cell Lines

  • Chang, Young-Ja (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University) ;
  • Kim, Hyo-Lim (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University) ;
  • Sacket, Santosh J. (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University) ;
  • Kim, Kye-Ok (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University) ;
  • Han, Mi-Jin (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University) ;
  • Jo, Ji-Yeong (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University) ;
  • Im, Dong-Soon (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University)
  • Published : 2007.09.30

Abstract

In the present study, we have tested the effect of dioleoyl phosphatidic acid (PA) on intracellular $Ca_{2+}$ concentration ($[Ca^{2+}]_{i}$) in two human colon cancer cell lines (HCT116 and HT29). PA and lysophosphatidic acid (LPA), a bioactive lysolipid, increased $[Ca^{2+}]_{i}$ in both HCT116 and HT29 cell lines. Increases of $[Ca^{2+}]_{i}$ by PA and LPA were more robust in HCT116 cells than in HT29 cells. A specific inhibitor of phospholipase C (U73122), however, was not inhibitory to the cell responses. Pertussis toxin, a specific inhibitor of $G_{i/o}$ type G proteins, however, had an inhibitory effect on the responses except for an LPA-induced one in HT29 cells. Ruthenium red, an inhibitor of the ryanodine receptor, was not inhibitory on the responses, however, 2-APB, a specific inhibitor of inositol 1,4,5-trisphosphate receptor, completely inhibited both lipid-induced $Ca^{2+}$ increases in both cell types. Furthermore, by using Ki16425 and VPC32183, two structurally dissimilar specific antagonists for $LPA_{1}/LPA_{3}$ receptors, an involvement of endogenous LPA receptors in the $Ca^{2+}$ responses was observed. Ki16425 completely inhibited the responses but the susceptibility to VPC32183 was different to PA and LPA in the two cell types. Expression levels of five LPA receptors in the HCT116 and HT29 cells were also assessed. Our data support the notion that PA could increase $[Ca^{2+}]_{i}$ in human colon cancer cells, probably via endogenous LPA receptors, G proteins and $IP_{3}$ receptors, thereby suggesting a role of PA as an intercellular lipid mediator.

Keywords

References

  1. An, S., Bleu, T., Hallmark, O. G. and Goetzl, E. J. (1998a). Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem. 273, 7906-7910 https://doi.org/10.1074/jbc.273.14.7906
  2. An, S., Bleu, T., Zheng, Y. and Goetzl, E. J. (1998b). Recombinant human G protein-coupled lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol. Pharmacol. 54, 881-888 https://doi.org/10.1124/mol.54.5.881
  3. Barritt, G. J., Dalton, K. A. and Whiting, J. A. (1981). Evidence that phosphatidic acid stimulates the uptake of calcium by liver cells but not calcium release from mitochondria. FEBS Lett. 125, 137-140 https://doi.org/10.1016/0014-5793(81)80703-X
  4. Bashir, N., Kuhen, K. and Taub, M. (1992). Phospholipids regulate growth and function of MDCK cells in hormonally defined serum free medium. In Vitro Cell Dev. Biol. 28A, 663-668 https://doi.org/10.1007/BF02631043
  5. Chang, Y. J., Lee, Y. K., Lee, E. H., Park, J. J., Chung, S. K. and Im, D. S. (2006). Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and $Ca^{2+}$ in the U937 monocyte cell line. Arch. Pharm. Res. 29, 657-665 https://doi.org/10.1007/BF02968250
  6. Chang, Y. J., Kim, Y. L., Lee, Y. K., Sacket, S. J., Kim, K., Kim, H. L., Han, M., Bae, Y. S., Okajima, F. and Im, D. S. (2007). Dioleoyl phosphatidic acid increases intracellular $Ca^{2+}$ through endogenous LPA receptors in C6 glioma and L2071 fibroblasts. Prostaglandins Other Lipid Mediat. 83, 268-276 https://doi.org/10.1016/j.prostaglandins.2007.01.014
  7. Durgam, G. G., Tsukahara, R., Makarova, N., Walker, M. D., Fujiwara, Y., Pigg, K. R., Baker, D. L., Sardar, V. M., Parrill, A. L., Tigyi, G. and Miller, D. D. (2006). Synthesis and pharmacological evaluation of second-generation phosphatidic acid derivatives as lysophosphatidic acid receptor ligands. Bioorg. Med. Chem. Lett. 16, 633-640 https://doi.org/10.1016/j.bmcl.2005.10.031
  8. English, D., Cui, Y. and Siddiqui, R. A. (1996). Messenger functions of phosphatidic acid. Chem. Phys. Lipids. 80, 117-132 https://doi.org/10.1016/0009-3084(96)02549-2
  9. English, D., Martin, M., Harvey, K. A., Akard, L. P., Allen, R., Widlanski, T. S., Garcia, J. G. and Siddiqui, R. A. (1997). Characterization and purification of neutrophil ecto-phosphatidic acid phosphohydrolase. Biochem. J. 324 ( Pt 3), 941-950 https://doi.org/10.1042/bj3240941
  10. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. and Chen, J. (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 294, 1942-1945 https://doi.org/10.1126/science.1066015
  11. Fernandez, B., Balboa, M. A., Solis-Herruzo, J. A. and Balsinde, J. (1994). Phosphatidate-induced arachidonic acid mobilization in mouse peritoneal macrophages. J. Biol. Chem. 269, 26711-26716
  12. Fischer, D. J., Nusser, N., Virag, T., Yokoyama, K., Wang, D., Baker, D. L., Bautista, D., Parrill, A. L. and Tigyi, G. (2001). Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol. 60, 776-784
  13. Fitzgerald, L. R., Dytko, G. M., Sarau, H. M., Mannan, I. J., Ellis, C., Lane, P. A., Tan, K. B., Murdock, P. R., Wilson, S., Bergsma, D. J., Ames, R. S., Foley, J. J., Campbell, D. A., McMillan, L., Evans, N., Elshourbagy, N. A., Minehart, H. and Tsui, P. (2000). Identification of an EDG7 variant, HOFNH30, a Gprotein-coupled receptor for lysophosphatidic acid. Biochem. Biophys. Res. Commun. 273, 805-810 https://doi.org/10.1006/bbrc.2000.2943
  14. Gerrard, J. M., Butler, A. M., Peterson, D. A. and White, J. G. (1978). Phosphatidic acid releases calcium from a platelet membrane fraction in vitro. Prostaglandins Med. 1, 387-396 https://doi.org/10.1016/0161-4630(78)90125-8
  15. Harris, R. A., Schmidt, J., Hitzemann, B. A. and Hitzemann, R. J. (1981). Phosphatidate as a molecular link between depolarization and neurotransmitter release in the brain. Science 212, 1290-1291 https://doi.org/10.1126/science.7233220
  16. Hiramatsu, T., Sonoda, H., Takanezawa, Y., Morikawa, R., Ishida, M., Kasahara, K., Sanai, Y., Taguchi, R., Aoki, J. and Arai, H. (2003). Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase $A_{1}s$, mPA-$PLA_{1\alpha}$ and mPA-$PLA_{1\beta}$. J. Biol. Chem. 278, 49438-49447 https://doi.org/10.1074/jbc.M213018200
  17. Hornberger, T. A., Chu, W. K., Mak, Y. W., Hsiung, J. W., Huang, S. A. and Chien, S. (2006). The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 103, 4741-4746 https://doi.org/10.1073/pnas.0600678103
  18. Huang, K. S., Li, S. and Low, M. G. (1991). Glycosylphosphatidylinositol-specific phospholipase D. Methods Enzymol. 197, 567-575 https://doi.org/10.1016/0076-6879(91)97184-Z
  19. Ikeda, Y., Kikuchi, M., Toyama, K., Watanabe, K. and Ando, Y. (1979). Ionophoretic activities of phospholipids on human platelets. Thromb. Haemost. 41, 779-786
  20. Im, D. S., Nagano, K., Katada, T., Okajima, F. and Ui, M. (2005). Differential change of Ins-$P_{3}$-$Ca^{2+}$ signaling during culture of rat hepatocytes. Cell Signal.17, 83-91 https://doi.org/10.1016/j.cellsig.2004.06.002
  21. Imai, A., Ishizuka, Y., Kawai, K. and Nozawa, Y. (1982). Evidence for coupling of phosphatidic acid formation and calcium influx in thrombin-activated human platelets. Biochem. Biophys. Res. Commun. 108, 752-759 https://doi.org/10.1016/0006-291X(82)90893-2
  22. Jalink, K., van Corven, E. J. and Moolenaar, W. H. (1990). Lysophosphatidic acid, but not phosphatidic acid, is a potent $Ca^{2+}$-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J. Biol. Chem. 265, 12232-12239
  23. Kajiyama, Y. and Ui, M. (1994). Switching from alpha 1- to betasubtypes in adrenergic response during primary culture of adult-rat hepatocytes as affected by the cell-to-cell interaction through plasma membranes. Biochem. J. 303 ( Pt 1), 313-321 https://doi.org/10.1042/bj3030313
  24. Kawase, T. and Suzuki, A. (1988). Phosphatidic acid-induced calcium mobilization in osteoblasts. J. Biochem. (Tokyo) 103, 581-582 https://doi.org/10.1093/oxfordjournals.jbchem.a122309
  25. Kawase, T. and Suzuki, A. (1990). Initial responses of a clonal osteoblast-like cell line, MOB 3-4, to phosphatidic acid in vitro. Bone Miner. 10, 61-70 https://doi.org/10.1016/0169-6009(90)90049-L
  26. Knauss, T. C., Jaffer, F. E. and Abboud, H. E. (1990). Phosphatidic acid modulates DNA synthesis, phospholipase C, and platelet-derived growth factor mRNAs in cultured mesangial cells. Role of protein kinase C. J. Biol. Chem. 265, 14457-14463
  27. Kotarsky, K., Boketoft, A., Bristulf, J., Nilsson, N. E., Norberg, A., Hansson, S., Sillard, R., Owman, C., Leeb-Lundberg, F. L. and Olde, B. (2006). Lysophosphatidic Acid Binds to and Activates Gpr92, a G Protein-Coupled Receptor Highly Expressed in Gastro-Intestinal Lymphocytes. J. Pharmacol. Exp. Ther. 318, 619-628 https://doi.org/10.1124/jpet.105.098848
  28. Krabak, M. J. and Hui, S. W. (1991). The mitogenic activities of phosphatidate are acyl-chain-length dependent and calcium independent in C3H/10T1/2 cells. Cell Regul. 2, 57-64
  29. Kurz, T., Wolf, R. A. and Corr, P. B. (1993). Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes. Circ. Res. 72, 701-706 https://doi.org/10.1161/01.RES.72.3.701
  30. Lee, C. H., Reisine, T. D. and Wax, M. B. (1989). Alterations of intracellular calcium in human non-pigmented ciliary epithelial cells of the eye. Exp. Eye Res. 48, 733-743 https://doi.org/10.1016/0014-4835(89)90060-2
  31. Lee, C. W., Rivera, R., Gardell, S., Dubin, A. E. and Chun, J. (2006). GPR92 as a New $G_{12/13}$- and $G_{q}$-coupled Lysophosphatidic Acid Receptor That Increases cAMP, $LPA_{5}$. J. Biol. Chem. 281, 23589-23597 https://doi.org/10.1074/jbc.M603670200
  32. Lee, C. W., Rivera, R., Dubin, A. E. and Chun, J. (2007). $LPA_{4}$/GPR23 is an LPA receptor utilizing $G_{s}$, $G_{q}$/$G_{i}$-mediated calcium signaling and $G_{12/13}$-mediated Rho activation. J. Biol. Chem. 282, 4310-4317 https://doi.org/10.1074/jbc.M610826200
  33. McGhee, J. G. and Shoback, D. M. (1990). Effects of phosphatidic acid on parathyroid hormone release, intracellular free $Ca^{2+}$, and inositol phosphates in dispersed bovine parathyroid cells. Endocrinology 126, 899-907 https://doi.org/10.1210/endo-126-2-899
  34. Moritz, A., De Graan, P. N., Gispen, W. H. and Wirtz, K. W. (1992). Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J. Biol. Chem. 267, 7207-7210
  35. Noguchi, K., Ishii, S. and Shimizu, T. (2003). Identification of p2y9/GPR23 as a novel G protein-coupled receptor for Lysophosphatidic acid, structurally distant from the Edg family. J. Biol. Chem. 278, 25600-25606 https://doi.org/10.1074/jbc.M302648200
  36. Osugi, T., Uchida, S., Watanabe, Y. and Yoshida, H. (1984). Differences in $Ca^{2+}$ mobilization induced by alpha-adrenergic agonist and phosphatidic acid in cultured hepatocytes. Life Sci. 35, 469-475 https://doi.org/10.1016/0024-3205(84)90239-X
  37. Pearce, B., Jakobson, K., Morrow, C. and Murphy, S. (1994). Phosphatidic acid promotes phosphoinositide metabolism and DNA synthesis in cultured cortical astrocytes. Neurochem. Int. 24, 165-171 https://doi.org/10.1016/0197-0186(94)90103-1
  38. Ryder, N. S., Talwar, H. S., Reynolds, N. J., Voorhees, J. J. and Fisher, G. J. (1993). Phosphatidic acid and phospholipase D both stimulate phosphoinositide turnover in cultured human keratinocytes. Cell Signal. 5, 787-794 https://doi.org/10.1016/0898-6568(93)90039-O
  39. Siddiqui, R. A. and Yang, Y. C. (1995). Interleukin-11 induces phosphatidic acid formation and activates MAP kinase in mouse 3T3-L1 cells. Cell Signal. 7, 247-2 https://doi.org/10.1016/0898-6568(94)00083-N
  40. Siegmann, D. W. (1987). Stimulation of quiescent 3T3 cells by phosphatidic acid-containing liposomes. Biochem. Biophys. Res. Commun. 145, 228-233 https://doi.org/10.1016/0006-291X(87)91310-6
  41. Sonoda, H., Aoki, J., Hiramatsu, T., Ishida, M., Bandoh, K., Nagai, Y., Taguchi, R., Inoue, K. and Arai, H. (2002). A novel phosphatidic acid-selective phospholipase $A_{1}$ that produces lysophosphatidic acid. J. Biol. Chem. 277, 34254-34263 https://doi.org/10.1074/jbc.M201659200
  42. Stace, C. L. and Ktistakis, N. T. (2006). Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta. 1761, 913-926 https://doi.org/10.1016/j.bbalip.2006.03.006
  43. van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T. and Moolenaar, W. H. (1989). Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59, 45-54 https://doi.org/10.1016/0092-8674(89)90868-4
  44. Weiss, S. J., McKinney, J. S. and Putney, J. W., Jr. (1982). Regulation of phosphatidate synthesis by secretagogues in parotid acinar cells. Biochem. J. 204, 587-592 https://doi.org/10.1042/bj2040587
  45. Wood, C. A., Padmore, L. and Radda, G. K. (1993). The effect of phosphatidic acid on the proliferation of Swiss 3T3 cells. Biochem. Soc. Trans. 21, 369S https://doi.org/10.1042/bst021369s
  46. Yanagida, K., Ishii, S., Hamano, F., Noguchi, K. and Shimizu, T. (2007). $LPA_{4}$/p2y9/GPR23 mediates Rho-dependent morphological changes in a rat neuronal cell line. J. Biol. Chem. 282, 5814-5824 https://doi.org/10.1074/jbc.M610767200
  47. Yun, M. R., Okajima, F. and Im, D. S. (2004). The action mode of lysophosphatidylcholine in human monocytes. J. Pharmacol. Sci. 94, 45-50 https://doi.org/10.1254/jphs.94.45

Cited by

  1. Recent developments in ruthenium anticancer drugs vol.1, pp.6, 2009, https://doi.org/10.1039/b904071d
  2. Dioeloyl phosphatidic acid induces morphological changes through an endogenous LPA receptor in C6 glioma cells vol.31, pp.5, 2008, https://doi.org/10.1007/s12272-001-1204-7
  3. Lysophosphatidylethanolamine increases intracellular Ca2+ through LPA1 in PC-12 neuronal cells vol.461, pp.2, 2015, https://doi.org/10.1016/j.bbrc.2015.04.042
  4. Lysophosphatidylethanolamine utilizes LPA1 and CD97 in MDA-MB-231 breast cancer cells vol.25, pp.11, 2013, https://doi.org/10.1016/j.cellsig.2013.07.001
  5. Isolation of Single Chain Antibodies Specific to Lysophosphatidic Acid Receptor 1 (LPA 1 ) from a M13 Phage Display Library Using Purified LPA 1 Stabilized in Nanodiscs vol.40, pp.7, 2007, https://doi.org/10.1002/bkcs.11751