References
- An, S., Bleu, T., Hallmark, O. G. and Goetzl, E. J. (1998a). Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem. 273, 7906-7910 https://doi.org/10.1074/jbc.273.14.7906
- An, S., Bleu, T., Zheng, Y. and Goetzl, E. J. (1998b). Recombinant human G protein-coupled lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol. Pharmacol. 54, 881-888 https://doi.org/10.1124/mol.54.5.881
- Barritt, G. J., Dalton, K. A. and Whiting, J. A. (1981). Evidence that phosphatidic acid stimulates the uptake of calcium by liver cells but not calcium release from mitochondria. FEBS Lett. 125, 137-140 https://doi.org/10.1016/0014-5793(81)80703-X
- Bashir, N., Kuhen, K. and Taub, M. (1992). Phospholipids regulate growth and function of MDCK cells in hormonally defined serum free medium. In Vitro Cell Dev. Biol. 28A, 663-668 https://doi.org/10.1007/BF02631043
-
Chang, Y. J., Lee, Y. K., Lee, E. H., Park, J. J., Chung, S. K. and Im, D. S. (2006). Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and
$Ca^{2+}$ in the U937 monocyte cell line. Arch. Pharm. Res. 29, 657-665 https://doi.org/10.1007/BF02968250 -
Chang, Y. J., Kim, Y. L., Lee, Y. K., Sacket, S. J., Kim, K., Kim, H. L., Han, M., Bae, Y. S., Okajima, F. and Im, D. S. (2007). Dioleoyl phosphatidic acid increases intracellular
$Ca^{2+}$ through endogenous LPA receptors in C6 glioma and L2071 fibroblasts. Prostaglandins Other Lipid Mediat. 83, 268-276 https://doi.org/10.1016/j.prostaglandins.2007.01.014 - Durgam, G. G., Tsukahara, R., Makarova, N., Walker, M. D., Fujiwara, Y., Pigg, K. R., Baker, D. L., Sardar, V. M., Parrill, A. L., Tigyi, G. and Miller, D. D. (2006). Synthesis and pharmacological evaluation of second-generation phosphatidic acid derivatives as lysophosphatidic acid receptor ligands. Bioorg. Med. Chem. Lett. 16, 633-640 https://doi.org/10.1016/j.bmcl.2005.10.031
- English, D., Cui, Y. and Siddiqui, R. A. (1996). Messenger functions of phosphatidic acid. Chem. Phys. Lipids. 80, 117-132 https://doi.org/10.1016/0009-3084(96)02549-2
- English, D., Martin, M., Harvey, K. A., Akard, L. P., Allen, R., Widlanski, T. S., Garcia, J. G. and Siddiqui, R. A. (1997). Characterization and purification of neutrophil ecto-phosphatidic acid phosphohydrolase. Biochem. J. 324 ( Pt 3), 941-950 https://doi.org/10.1042/bj3240941
- Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. and Chen, J. (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 294, 1942-1945 https://doi.org/10.1126/science.1066015
- Fernandez, B., Balboa, M. A., Solis-Herruzo, J. A. and Balsinde, J. (1994). Phosphatidate-induced arachidonic acid mobilization in mouse peritoneal macrophages. J. Biol. Chem. 269, 26711-26716
- Fischer, D. J., Nusser, N., Virag, T., Yokoyama, K., Wang, D., Baker, D. L., Bautista, D., Parrill, A. L. and Tigyi, G. (2001). Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol. 60, 776-784
- Fitzgerald, L. R., Dytko, G. M., Sarau, H. M., Mannan, I. J., Ellis, C., Lane, P. A., Tan, K. B., Murdock, P. R., Wilson, S., Bergsma, D. J., Ames, R. S., Foley, J. J., Campbell, D. A., McMillan, L., Evans, N., Elshourbagy, N. A., Minehart, H. and Tsui, P. (2000). Identification of an EDG7 variant, HOFNH30, a Gprotein-coupled receptor for lysophosphatidic acid. Biochem. Biophys. Res. Commun. 273, 805-810 https://doi.org/10.1006/bbrc.2000.2943
- Gerrard, J. M., Butler, A. M., Peterson, D. A. and White, J. G. (1978). Phosphatidic acid releases calcium from a platelet membrane fraction in vitro. Prostaglandins Med. 1, 387-396 https://doi.org/10.1016/0161-4630(78)90125-8
- Harris, R. A., Schmidt, J., Hitzemann, B. A. and Hitzemann, R. J. (1981). Phosphatidate as a molecular link between depolarization and neurotransmitter release in the brain. Science 212, 1290-1291 https://doi.org/10.1126/science.7233220
-
Hiramatsu, T., Sonoda, H., Takanezawa, Y., Morikawa, R., Ishida, M., Kasahara, K., Sanai, Y., Taguchi, R., Aoki, J. and Arai, H. (2003). Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase
$A_{1}s$ , mPA-$PLA_{1\alpha}$ and mPA-$PLA_{1\beta}$ . J. Biol. Chem. 278, 49438-49447 https://doi.org/10.1074/jbc.M213018200 - Hornberger, T. A., Chu, W. K., Mak, Y. W., Hsiung, J. W., Huang, S. A. and Chien, S. (2006). The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 103, 4741-4746 https://doi.org/10.1073/pnas.0600678103
- Huang, K. S., Li, S. and Low, M. G. (1991). Glycosylphosphatidylinositol-specific phospholipase D. Methods Enzymol. 197, 567-575 https://doi.org/10.1016/0076-6879(91)97184-Z
- Ikeda, Y., Kikuchi, M., Toyama, K., Watanabe, K. and Ando, Y. (1979). Ionophoretic activities of phospholipids on human platelets. Thromb. Haemost. 41, 779-786
-
Im, D. S., Nagano, K., Katada, T., Okajima, F. and Ui, M. (2005). Differential change of Ins-
$P_{3}$ -$Ca^{2+}$ signaling during culture of rat hepatocytes. Cell Signal.17, 83-91 https://doi.org/10.1016/j.cellsig.2004.06.002 - Imai, A., Ishizuka, Y., Kawai, K. and Nozawa, Y. (1982). Evidence for coupling of phosphatidic acid formation and calcium influx in thrombin-activated human platelets. Biochem. Biophys. Res. Commun. 108, 752-759 https://doi.org/10.1016/0006-291X(82)90893-2
-
Jalink, K., van Corven, E. J. and Moolenaar, W. H. (1990). Lysophosphatidic acid, but not phosphatidic acid, is a potent
$Ca^{2+}$ -mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J. Biol. Chem. 265, 12232-12239 - Kajiyama, Y. and Ui, M. (1994). Switching from alpha 1- to betasubtypes in adrenergic response during primary culture of adult-rat hepatocytes as affected by the cell-to-cell interaction through plasma membranes. Biochem. J. 303 ( Pt 1), 313-321 https://doi.org/10.1042/bj3030313
- Kawase, T. and Suzuki, A. (1988). Phosphatidic acid-induced calcium mobilization in osteoblasts. J. Biochem. (Tokyo) 103, 581-582 https://doi.org/10.1093/oxfordjournals.jbchem.a122309
- Kawase, T. and Suzuki, A. (1990). Initial responses of a clonal osteoblast-like cell line, MOB 3-4, to phosphatidic acid in vitro. Bone Miner. 10, 61-70 https://doi.org/10.1016/0169-6009(90)90049-L
- Knauss, T. C., Jaffer, F. E. and Abboud, H. E. (1990). Phosphatidic acid modulates DNA synthesis, phospholipase C, and platelet-derived growth factor mRNAs in cultured mesangial cells. Role of protein kinase C. J. Biol. Chem. 265, 14457-14463
- Kotarsky, K., Boketoft, A., Bristulf, J., Nilsson, N. E., Norberg, A., Hansson, S., Sillard, R., Owman, C., Leeb-Lundberg, F. L. and Olde, B. (2006). Lysophosphatidic Acid Binds to and Activates Gpr92, a G Protein-Coupled Receptor Highly Expressed in Gastro-Intestinal Lymphocytes. J. Pharmacol. Exp. Ther. 318, 619-628 https://doi.org/10.1124/jpet.105.098848
- Krabak, M. J. and Hui, S. W. (1991). The mitogenic activities of phosphatidate are acyl-chain-length dependent and calcium independent in C3H/10T1/2 cells. Cell Regul. 2, 57-64
- Kurz, T., Wolf, R. A. and Corr, P. B. (1993). Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes. Circ. Res. 72, 701-706 https://doi.org/10.1161/01.RES.72.3.701
- Lee, C. H., Reisine, T. D. and Wax, M. B. (1989). Alterations of intracellular calcium in human non-pigmented ciliary epithelial cells of the eye. Exp. Eye Res. 48, 733-743 https://doi.org/10.1016/0014-4835(89)90060-2
-
Lee, C. W., Rivera, R., Gardell, S., Dubin, A. E. and Chun, J. (2006). GPR92 as a New
$G_{12/13}$ - and$G_{q}$ -coupled Lysophosphatidic Acid Receptor That Increases cAMP,$LPA_{5}$ . J. Biol. Chem. 281, 23589-23597 https://doi.org/10.1074/jbc.M603670200 -
Lee, C. W., Rivera, R., Dubin, A. E. and Chun, J. (2007).
$LPA_{4}$ /GPR23 is an LPA receptor utilizing$G_{s}$ ,$G_{q}$ /$G_{i}$ -mediated calcium signaling and$G_{12/13}$ -mediated Rho activation. J. Biol. Chem. 282, 4310-4317 https://doi.org/10.1074/jbc.M610826200 -
McGhee, J. G. and Shoback, D. M. (1990). Effects of phosphatidic acid on parathyroid hormone release, intracellular free
$Ca^{2+}$ , and inositol phosphates in dispersed bovine parathyroid cells. Endocrinology 126, 899-907 https://doi.org/10.1210/endo-126-2-899 - Moritz, A., De Graan, P. N., Gispen, W. H. and Wirtz, K. W. (1992). Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J. Biol. Chem. 267, 7207-7210
- Noguchi, K., Ishii, S. and Shimizu, T. (2003). Identification of p2y9/GPR23 as a novel G protein-coupled receptor for Lysophosphatidic acid, structurally distant from the Edg family. J. Biol. Chem. 278, 25600-25606 https://doi.org/10.1074/jbc.M302648200
-
Osugi, T., Uchida, S., Watanabe, Y. and Yoshida, H. (1984). Differences in
$Ca^{2+}$ mobilization induced by alpha-adrenergic agonist and phosphatidic acid in cultured hepatocytes. Life Sci. 35, 469-475 https://doi.org/10.1016/0024-3205(84)90239-X - Pearce, B., Jakobson, K., Morrow, C. and Murphy, S. (1994). Phosphatidic acid promotes phosphoinositide metabolism and DNA synthesis in cultured cortical astrocytes. Neurochem. Int. 24, 165-171 https://doi.org/10.1016/0197-0186(94)90103-1
- Ryder, N. S., Talwar, H. S., Reynolds, N. J., Voorhees, J. J. and Fisher, G. J. (1993). Phosphatidic acid and phospholipase D both stimulate phosphoinositide turnover in cultured human keratinocytes. Cell Signal. 5, 787-794 https://doi.org/10.1016/0898-6568(93)90039-O
- Siddiqui, R. A. and Yang, Y. C. (1995). Interleukin-11 induces phosphatidic acid formation and activates MAP kinase in mouse 3T3-L1 cells. Cell Signal. 7, 247-2 https://doi.org/10.1016/0898-6568(94)00083-N
- Siegmann, D. W. (1987). Stimulation of quiescent 3T3 cells by phosphatidic acid-containing liposomes. Biochem. Biophys. Res. Commun. 145, 228-233 https://doi.org/10.1016/0006-291X(87)91310-6
-
Sonoda, H., Aoki, J., Hiramatsu, T., Ishida, M., Bandoh, K., Nagai, Y., Taguchi, R., Inoue, K. and Arai, H. (2002). A novel phosphatidic acid-selective phospholipase
$A_{1}$ that produces lysophosphatidic acid. J. Biol. Chem. 277, 34254-34263 https://doi.org/10.1074/jbc.M201659200 - Stace, C. L. and Ktistakis, N. T. (2006). Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta. 1761, 913-926 https://doi.org/10.1016/j.bbalip.2006.03.006
- van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T. and Moolenaar, W. H. (1989). Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59, 45-54 https://doi.org/10.1016/0092-8674(89)90868-4
- Weiss, S. J., McKinney, J. S. and Putney, J. W., Jr. (1982). Regulation of phosphatidate synthesis by secretagogues in parotid acinar cells. Biochem. J. 204, 587-592 https://doi.org/10.1042/bj2040587
- Wood, C. A., Padmore, L. and Radda, G. K. (1993). The effect of phosphatidic acid on the proliferation of Swiss 3T3 cells. Biochem. Soc. Trans. 21, 369S https://doi.org/10.1042/bst021369s
-
Yanagida, K., Ishii, S., Hamano, F., Noguchi, K. and Shimizu, T. (2007).
$LPA_{4}$ /p2y9/GPR23 mediates Rho-dependent morphological changes in a rat neuronal cell line. J. Biol. Chem. 282, 5814-5824 https://doi.org/10.1074/jbc.M610767200 - Yun, M. R., Okajima, F. and Im, D. S. (2004). The action mode of lysophosphatidylcholine in human monocytes. J. Pharmacol. Sci. 94, 45-50 https://doi.org/10.1254/jphs.94.45
Cited by
- Recent developments in ruthenium anticancer drugs vol.1, pp.6, 2009, https://doi.org/10.1039/b904071d
- Dioeloyl phosphatidic acid induces morphological changes through an endogenous LPA receptor in C6 glioma cells vol.31, pp.5, 2008, https://doi.org/10.1007/s12272-001-1204-7
- Lysophosphatidylethanolamine increases intracellular Ca2+ through LPA1 in PC-12 neuronal cells vol.461, pp.2, 2015, https://doi.org/10.1016/j.bbrc.2015.04.042
- Lysophosphatidylethanolamine utilizes LPA1 and CD97 in MDA-MB-231 breast cancer cells vol.25, pp.11, 2013, https://doi.org/10.1016/j.cellsig.2013.07.001
- Isolation of Single Chain Antibodies Specific to Lysophosphatidic Acid Receptor 1 (LPA 1 ) from a M13 Phage Display Library Using Purified LPA 1 Stabilized in Nanodiscs vol.40, pp.7, 2007, https://doi.org/10.1002/bkcs.11751