DOI QR코드

DOI QR Code

Effects of Vegetable Sprout Power Mixture on Lipid Metabolism in Rats Fed High Fat Diet

새싹채소 혼합분말이 고지방 식이를 급여한 흰쥐의 지질대사에 미치는 영향

  • 이재준 (조선대학교 식품영양학과) ;
  • 이유미 (조선대학교 식품영양학과) ;
  • 신형덕 (조선대학교 식품영양학과) ;
  • 정영심 (까치마을 영농조합법인) ;
  • 이명렬 (조선대학교 식품영양학과)
  • Published : 2007.08.30

Abstract

This study was performed to investigate the effects of vegetable sprout powder on serum and adipose tissue lipid metabolism in rats fed high-fat diet for 4 weeks for induction hyperlipidemic model rat. Weight-matched male Sprague-Dawley rats were assigned to five groups according to dietary fat level (10% or 20% of diet wt.) and mixture of vegetable sprout powder levels (5% or 10% 10% or 20% of diet wt.). Vegetable sprout powder was the mixture of same amounts of dried barley, broccoli, rapeseed, alfalfa, radish, mustard, buckwheat and brussels sprouts. Experimental groups were normal fat diet with 5% cellulose (NF-C), high fat diet without fiber (HF-N), high fat diet with 5% cellulose (HF-C), HF-C diet with 5% vegetable sprout powder (HF-CSL), and HF-C diet with 10% vegetable sprout powder (HF-CSH). The body weight of HF-N group increased 16% compared with the NF-C group, while it was decreased by 15% and 22% for HF-CSL group and HF-CSH group, respectively. Fat mass and fat cell size of adipose tissue were lower in HF-CSL group and HF-CSH group compared with HF-C group, and lower in HF-CSH group compared with HF-CSL group. Serum triglyceride, total cholesterol and LDL-cholesterol contents were markedly decreased by vegetable sprout powder containing diet, while the serum HDL-cholesterol and phospholipid contents were higher in vegetable sprout powder containing diet in a dose-dependent manner. Leptin and insulin levels in serum showed a decrease in HF-CSH group. Significantly increased contents of triglyceride, total cholesterol, LDL-cholesterol, leptin and insulin in the serum of HF-N group were returned to normal or even below normal levels by feeding 10% vegetable sprout powder diet. The increased activities of NADP-malate dehydrogenase (ME), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) and lipoprotein lipase (LPL) in adiposetissue by HF-N group were decreased to the activity of normal fat group by feeding vegetable sprout powder in a dose-dependant manner. These results indicate that lipid metabolism in rats fed high-fat diet was suppressed by feeding vegetable sprout powder.

본 연구는 새싹채소 혼합분말(배추, 유채, 브로콜리, 적무, 갓, 알팔파, 메밀 및 보리)이 혈액 및 지방조직의 지질대사 개선효과를 살펴보기 위하여 고지방식이를 섭취한 흰쥐에게 새싹채소 혼합분말을 식이의 5%와 10%로 4주간 급여한 후, 체내 지방조직의 지방 함량, 지방세포의 크기, 지방합성 관련 효소인 ME, 6PGDH, G6PDH, LPL 활성, 혈청 지질성상, 인슐린 및 렙틴 농도를 측정하였다. 체중증가량은 고지방식이만을 급여한 HF-N군이 유의하게 증가하였으며, 고지방식이와 새싹채소 혼합분말을 동시에 급여한 HF-CSL군과 HF-CSH군은 정상지방섭취군인 NF-C군과 유사하였다. 고지방식이만을 급여한 HF-N군은 지방조직의 무게와 지방 함량이 유의하게 높았으며, HF-CSL군과 HF-CSH군은 NF-C군보다도 낮은 경향이었다. 혈청 중 중성지방, 총콜레스테롤 및 LDL-콜레스테롤 함량은 고농도의 새싹채소 혼합분말을 급여한 HF-CSH군이 정상지방섭취군인 NF-C군보다도 낮았으며, HDL-콜레스테롤 함량은 NF-C군보다 높았다. 혈청 인슐린과 렙틴 농도는 HF-N군이 다른 군들에 비하여 가장 높게 나타났으며, 새싹채소 혼합분말의 효과는 새싹채소 혼합분말의 섭취량이 증가함에 따라 감소하였다. 지방세포의 크기도 HF-N군이 다른 군들에 비하여 유의하게 컸다. 새싹채소 혼합분말의 섭취량이 증가함에 따라 지방세포 크기가 작아지는 경향이었다. 지방조직의 지방합성관련 효소인 ME, 6PGDH 및 G6PDH 활성은 지방조직 모두 HF-N군에서 가장 높았다. 새싹채소 혼합분말을 고농도 첨가한 HF-CSH군은 ME와 G6PDH 활성이 가장 낮았으며, NF-C군과는 유사한 활성을 나타내었다. 새싹채소 혼합분말의 섭취량이 증가함에 따라 지방조직의 ME, 6PGDH 및 G6PDH 활성은 저하되었다. 지방조직의 HR-LPL과 TE-LPL 활성은 HF-N군이 다른 군들에 비하여 증가하였으며, 새싹채소 혼합분말의 첨가량이 증가할수록 HR-LPL과 TE-LPL 활성 모두 유의하게 저하되었다. 고농도의 새싹채소 혼합분말을 첨가한 HF-CSH군은 NF-C군가 비슷한 LPL 활성을 나타내었다. 이상의 결과 흰쥐의 경우 식이섬유소를 첨가하지 않고 고지방식이만을 급여 시 체중 및 체지방 함량 증가, 혈청 중 총콜레스테롤 및 중성지방 함량 증가, 지방합성관련 효소 활성 증가를 유도하며, 식이 지방의 섭취 수준이 심혈관계질환에 미치는 영향이 큰 것으로 나타났다. 고지방식이로 인하여 증가된 이러한 결과는 새싹채소 혼합분말 섭취로 혈청 및 지방조직의 지질대사 개선에 영향을 미치는 것으로 나타났다. 이러한 효과는 새싹채소 혼합분말이 혈청 중 총콜레스테롤, 중성지질, 인슐린, 렙틴 농도의 변화와 지방조직의 지방합성관련 효소의 활성 변화로 유도된 것으로 사료된다.

Keywords

References

  1. Gopalan C, Rama Sastri BV, Balasubramanian SC. 2004. Nutritive values of indian foods. National Institute of Nutrition, Indian Council of Medical Research. Hyderabad, Indian
  2. Khalil AW, Zeb A, Mahmmod F, Tariq S, Khattak AB, Shah H. 2007. Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT 40: 937-945 https://doi.org/10.1016/j.lwt.2006.05.009
  3. Badshah A, Zeb A, Sattar A. 1991. Effect of soaking, germination and autoclaving on selected nutrients of rapeseed. Parkistan J Sci Indus Res 34: 446-448
  4. Sattar A, Shah A, Zeb A. 1995. Biosynthesis of ascorbic acid in germinating rapeseed cultivars. Plant Food for Human Nutr 47: 63-70 https://doi.org/10.1007/BF01088168
  5. El-Adawy TA. 2002. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Food for Human Nutr 57: 83-97 https://doi.org/10.1023/A:1013189620528
  6. Song MR. 2001. Volatile flavor components of cultivated radish (Raphanus sativus L.) sprout. Korean J Food & Nutr 14: 20-27
  7. Kuo TH, Van Middlesworth JF. 1988. Content of raffinose and oligosaccharides and sucrose in various plants. J Agric Food Chem 36: 32-29 https://doi.org/10.1021/jf00079a008
  8. Lee MH, Woo SJ, Oh SK, Kwon TB. 1994. Changes in contents and composition of dietary fiber during buckwheat germination. Korean J Food & Nutr 7: 274-283
  9. Kwon TB. 1994. Changes in rutin and fatty acids of buckwheat during germination. Korean J Food & Nutr 7: 124-127
  10. Kim YS, Kim JG, Kang IJ, Lee YS. 2005. Comparison of the chemical components of buckwheat seed and sprout. J Korean Soc Food Sci Nutr 34: 206-211 https://doi.org/10.3746/jkfn.2005.34.1.081
  11. Kim IS, Han SH, Han KW. 1997. Study on the chemical change of amino acid and vitamin of rapeseed during germination. J Korean Soc Food Sci Nutr 26: 1058-1062
  12. Lee YA, Kim HY, Cho EJ. 2005. Comparison of methanol extracts from vegetables on antioxidative effect under in vitro and cell system. J Korean Soc Food Sci Nutr 34: 1151-1156 https://doi.org/10.3746/jkfn.2005.34.8.1151
  13. Burkitt DP, Waker ARP, Painter NS. 1974. Dietary fiber and disease. J Am Med Assoc 229: 1068-1074 https://doi.org/10.1001/jama.229.8.1068
  14. Fernandez ML, Lin ECK, Trejo A, McNamara DJ. 1992. Prickly pear (Opuntia sp) pectin reverses low density lipoprotein receptor suppression induced by a hypercholesterolemic diet in guinea pig. J Nutr 122: 2330-2340 https://doi.org/10.1093/jn/122.12.2330
  15. Lee YE. 2005. Bioactive compounds in vegetables: their role in the prevention of disease. Kor J Food Cookery Sci 21: 380-398
  16. Kim YS, Min BY, Seo GB. 1983. Effects of dietary fiber on lipid metabolism of albino rats. Kor J Food & Nutr 12: 310-315
  17. Aro A, Uusitupa M, Voutilaninen E, Korhonen T. 1984. Effects of guar gum in male subjects with hypercholesterolemia. Am J Clin Nutr 39: 911-916 https://doi.org/10.1093/ajcn/39.6.911
  18. Jo YS, Park JR, Park SK, Chun SS, Chung SY, Ha BS. 1993. Effects of mustard leaf (Brassica juncea) on cholesterol metabolism in rats. Kor J Nutr 26: 13-20
  19. Behall JM, Scholfield DJ, Hallfrisch J. 2004. Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am J Clin Nutr 80: 1185-1193 https://doi.org/10.1093/ajcn/80.5.1185
  20. Bueno AAR, Cappel TG, Sumvold GD, Moxley RA, Reinhart GA, Clemens ET. 2000. Feline colonic microbes and fatty acid transport: effects of feeding cellulose, beet pulp and pectin/gum arabic fibers. Nutr Res 20: 1319-1328 https://doi.org/10.1016/S0271-5317(00)00211-6
  21. Bonfield CT. 1995. Dietary fiber and body management. In Dietary fiber in health and disease. Kritchevsky D, Bonfield CT, eds. Eagan Press, Washington, DC. p 459-465
  22. Kim SL, Kim SK, Park CH. 2004. Introduction and nutritional of buckwheat sprouts as a new vegetable. Food Res Int 37: 319-327 https://doi.org/10.1016/j.foodres.2003.12.008
  23. Cho YS, Horigoma T. 1989. Effect of alfalfa saponin on the serum cholesterol level in rats. J Korean Soc Food Sci Nutr 18: 430-434
  24. Lee JS, Park SJ, Sung KS, Han CK, Lee MH, Jung CW, Kwon TB. 2000. Effects of germinated-buckwheat on blood pressure, plasma glucose and lipid levels of spontaneously hypertensive rats. Korean J Food Sci Technol 32: 206-211
  25. Hwang EJ, Lee SY, Kwon SJ, Park MH, Boo HC. 2006. Antioxidative, antimicrobial and cytotoxic activities of Fagopyrum esculentum Möench extract in germinated seeds. Korean J Medical Crop Sci 14: 1-7
  26. Reeves PG, Nielson FH, Fahey Jr GC. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  27. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502
  28. Hirsch J, Gallian E. 1968. Methods for the determination of adipose cell size in man and animals. J Lipid Res 9: 110-119
  29. Digirolamo M, Mendlinger S, Fertig JA. 1971. Simple method determines fat cell size and number in four mammalian species. Am J Physiol 221: 850-858
  30. Ochoa S. 1955. Malic enzyme. Methods Enzymol 1: 735 https://doi.org/10.1016/0076-6879(55)01128-2
  31. Bernt E, Bergmeyer HU. 1974. Hexokinase. In Methods of Enzyme Analysis. Bergmeyer HU, Gawehn K, eds. Academic Press, New York. p 473-474
  32. Nilsson-Ehle P, Schotz MC. 1976. A stable radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res 17: 536-541
  33. Fried SK, Zechner R. 1989. Cathectin/tumor necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res 30: 1917-1923
  34. Iverius PH, Brunzell JD. 1985. Human adipose tissue lipoprotein lipase: changes with feeding and relation to postheparin plasma enzyme. Am J Physiol 249: E107-E114
  35. Artiss J, Brogan K, Brucal M, Moghaddam M, Catherine Jen KL. 2006. The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats. Metab Clin Exp 55: 195-202 https://doi.org/10.1016/j.metabol.2005.08.012
  36. Pellizzon M, Busion A, Jen KL. 2000. Short-term weight cycling in aging female rats increases rate of weight gain but not body fat content. Int J Obes 24: 236-245 https://doi.org/10.1038/sj.ijo.0801120
  37. Imaizumi K, Tominaga A, Maivatari K, Sugano M. 1982. Effect of cellulose and guar gum on the secretion of mesenteric lymph chylomicrons in meal-fed rats. Nutr Rep Int 26: 263-269
  38. Despres JP. 1993. Abdominal obesity as important component of insulin-resistant syndrome. Nutrition 19: 452-459
  39. Rebuffe-Scrive MU, Walsh A, Mcewen B, Rodin J. 1992. Effects of chronic stress and exogenous glucocorticoids on regional fat distribution and metabolism. Physiol Behav 52: 583-559 https://doi.org/10.1016/0031-9384(92)90351-2
  40. Sugden MC, Holness MJ, Howard RM. 1993. Changes in lipoprotein lipase activities in adipose tissue, heart and skeletal muscle during continuos or interrupted feeding. Biochem J 292: 113-119 https://doi.org/10.1042/bj2920113
  41. Kang KJ, Kim KH, Park HS. 2002. Dietary conjugated linoleic acid did not affect on body fitness, fat cell size and leptin levels in male Sprague Dawley rats. Nutr Sci 5: 117-122
  42. Buhman K, Furumoto E, Story J. 1998. Dietary payllium increases fecal bile acid excretion, total steroid excretion and bile acid biosynthesis in rats. J Nutr 128: 1199-1203 https://doi.org/10.1093/jn/128.7.1199
  43. Kaewprasert S, Okada M, Aoyama Y. 2001. Nutritional effects of cyclodextrins on liver and serum lipids and cecal organic acids in rats. J Nutr Sci Vitaminol (Tokyo) 47: 335-339 https://doi.org/10.3177/jnsv.47.335
  44. Kim SY, Kim HS, Kim SH, Su IS, Chung SY. 2003. Effects of the feeding Platycodon grandiflorum and Codonopsis ianceolata on the fatty acid composition of serum and liver in rats. J Korean Soc Food Sci Nutr 27: 1211-1216
  45. Oda T, Shikata T, Natio C, Suzuki H, Kanetaka T. 1970. Phospholipid fatty liver: a report of three cases with a new type of fatty liver. Jpn J Exp Med 40: 127-140
  46. Gordon T, Castelli W, Dawber T. 1981. Lipoprotein, cardiovascular disease and death, the Framingham study. Arch Inter Med 141: 1128-1135 https://doi.org/10.1001/archinte.141.9.1128
  47. Tall A. 1990. Plasma high density lipoproteins metabolism and relationship to atherogenesis. J Clin Invest 86: 379-384 https://doi.org/10.1172/JCI114722
  48. Miller NE. 1987. The evidence for the antiatherogenicity of high density lipoprotein in man. Lipid 13: 914-919 https://doi.org/10.1007/BF02533850
  49. Keith DG, Martin J, Pet J. 1998. The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett 438: 10-14 https://doi.org/10.1016/S0014-5793(98)01246-0
  50. Barnes M, Lapanowski K, Conley A, Rafols J, Jen KL, Dunber J. 2003. High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors. Brain Res Bull 61: 511-519 https://doi.org/10.1016/S0361-9230(03)00188-6
  51. Havel PJ. 2000. Role of adipose tissue in body-weight regulation: mechanism regulating leptin production and energy balance. Proc Nutr Soc 59: 359-371 https://doi.org/10.1017/S0029665100000410
  52. Havel PJ, Kasim KS, Mueller W, Johnson PR, Gingerich RL, Stern JS. 1996. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J Clin Endo Met 81: 4406-4413 https://doi.org/10.1210/jc.81.12.4406
  53. Van Harmelen V, Reynisdottir S, Erickson P, Throne A, Hoffstedt J, Lonnqvist F, Arner P. 1998. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes 47: 913-917 https://doi.org/10.2337/diabetes.47.6.913
  54. Kochan Z, Karbowska J, Swierczynski J. 1997. Unusual increase of lipogenesis in rat white adipose tissue after multiple cycles of starvation-refeeding. Metabolism 46: 10-17 https://doi.org/10.1016/S0026-0495(97)90160-8
  55. Lee JJ, Chun CS, Kin JG, Choi BD. 2000. Effect of fasting refeeding on rat adipose tissue lipoprotein lipase activity and lipogenesis: Influence of food restriction during refeeding. J Korean Soc Food Sci Nutr 29: 471-478
  56. O'Brien KD, Gordon D, Deeb S, Ferguson M, Chait A. 1992. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J Clin Invest 89: 1544-1550 https://doi.org/10.1172/JCI115747
  57. Semenkovich CF, Coleman T, Daugherty A. 1998. Effects of heterozygous lipoprotein lipase deficiency on diet-induced atherosclerosis in mice. J Lipid Res 39: 1141-1148
  58. Tall AR. 1986. Plasma lipid transfer proteins. J Lipid Res 27: 361-367
  59. Paik HS, Yearick ES. 1978. The influence of dietary fat and meal frequency on lipoprotein lipase and hormone-sensitive lipase in rat adipose tissue. J Nutr 108: 1978-1805
  60. Cryer A, Riley SE, Williams ER, Robinson DS. 1976. Effect of nutritional status on rat adipose tissue, muscle and post-heparin plasma clearing factor lipase activities: their relationship to triglyceride fatty acid uptake by fat-cells and to plasma insulin concentration. Clin Sci 50: 213-221 https://doi.org/10.1042/cs0500213

Cited by

  1. Effect of LED mixed light conditions on the glucosinolate pathway in brassica rapa vol.42, pp.3, 2015, https://doi.org/10.5010/JPB.2015.42.3.245
  2. Study of the Limitation Standards Setting of Sterilization Processing to Vagetable Juice Contain Barley Sprout vol.17, pp.7, 2016, https://doi.org/10.5762/KAIS.2016.17.7.367
  3. Effects of Young Barley Leaf Powders on the Quality Characteristics of Yellow Layer Cakes vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.830
  4. Effects of the Soybean Powder with Rich Aglycone Isoflavone on Lipid Metabolism and Antioxidative Activities in Hyperlipidemic Rats vol.37, pp.3, 2008, https://doi.org/10.3746/jkfn.2008.37.3.302
  5. Effects of Light Quality Using LEDs on Expression Patterns in Brassica rapa Seedlings vol.31, pp.5, 2013, https://doi.org/10.7235/hort.2013.12184
  6. Comparison of Physiological Activities of Radish Bud (Raphanus sativus L.) according to Extraction Solvent and Sprouting Period vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.549
  7. Effect of Brassica rapa Sprouts on Lipid Metabolism in Rats Fed High Fat Diet vol.39, pp.5, 2010, https://doi.org/10.3746/jkfn.2010.39.5.669
  8. Effect of Broccoli Sprouts on Cholesterol-lowering and Anti-obesity Effects in Rats Fed High Fat Diet vol.38, pp.3, 2009, https://doi.org/10.3746/jkfn.2009.38.3.309
  9. 새싹채소의 기호도 및 이용 실태 vol.24, pp.6, 2007, https://doi.org/10.17495/easdl.2014.12.24.6.896
  10. Evaluation of bioactive compounds in different tissues of sprouting okra vol.58, pp.5, 2007, https://doi.org/10.1007/s13580-017-0261-7
  11. 수수의 종자와 새싹채소의 기능성분 분석 vol.25, pp.2, 2007, https://doi.org/10.11625/kjoa.2017.25.2.499
  12. 보리새싹 함유 녹즙의 항산화력 분석에 관한 연구 vol.18, pp.12, 2007, https://doi.org/10.5762/kais.2017.18.12.248
  13. 브로콜리 새싹 용매 추출물의 항산화 및 면역조절 활성 vol.32, pp.1, 2019, https://doi.org/10.9799/ksfan.2019.32.1.001
  14. Effects of Young Barley Leaf Powder on Anti-obesity and Lipid Improvements in Rats Fed a High-fat Diet vol.30, pp.2, 2007, https://doi.org/10.7856/kjcls.2019.30.2.211
  15. Effect of the Ethanol Extract of Common Buckwheat (Fagopyrum esculentum Mӧench) on Plasma Lipid Profile of High Fat Diet Rats vol.31, pp.4, 2007, https://doi.org/10.12719/ksia.2019.31.4.409
  16. 새싹보리, 레몬밤 및 녹차 첨가 쿠키의 이화학적 항산화적 특성 vol.35, pp.5, 2007, https://doi.org/10.7318/kjfc/2020.35.5.459
  17. Comparative Study of the Effects of Light Controlled Germination Conditions on Saponarin Content in Barley Sprouts and Lipid Accumulation Suppression in HepG2 Hepatocyte and 3T3-L1 Adipocyte Cells Usi vol.25, pp.22, 2020, https://doi.org/10.3390/molecules25225349