DOI QR코드

DOI QR Code

Antioxidation and Antigenotoxic Effects of Buckwheat Sprout Extracts

메밀싹 추출물의 항산화 효과 및 유전독성억제 효과

  • Kim, Su-Hyun (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Lee, Eue-Yong (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Ham, Seung-Si (School of Bioscience and Biotechnology, Kangwon National University)
  • 김수현 (강원대학교 바이오산업공학부) ;
  • 이의용 (강원대학교 바이오산업공학부) ;
  • 함승시 (강원대학교 바이오산업공학부)
  • Published : 2007.08.30

Abstract

This study was carried out to determine the antioxidative and antigenotoxic effects of buckwheat (Fagopyrum esculentum Moench) sprout using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical donating method and micronucleus test. Buckwheat sprout were extracted with 70% ethanol and then further fractionated to n-hexane, chloroform, ethyl acetate (EtOAc), butanol and water. Among the five fractions, the EtOAc fraction showed the highest electron donating activity ($RC_{50}$ 26.1 ${\mu}g/mL$). The effects of buckwheat sprout extracts on the frequencies of micronucleated polychromatic erythrocytes (MNPCEs) induced by MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) were investigated in the bone marrow. 10, 20, 40 and 80 mg/kg of each extract were administered to animals immediately after injection of MNNG and the exposure time was 36 hrs. Inhibition effects of buckwheat sprout ethanol extract were 23.4%, 40.6%, 56.3% and 73.4%, respectively. When the fraction of hexane, chloroform, ethyl acetate, butanol and water from 70% ethanol extract were treated with concentration of 80 mg/kg, the suppression rates of the MNPCE were 64.1, 67.9, 75.8, 74.2 and 63.3%, respectively.

메밀싹을 건조 후 세절하여 70% 에탄올을 가하여 추출한 추출물과 용매의 극성에 따라 분별분리를 행하여 핵산, 클로로포름, 에틸아세테이트, 부탄올 및 물 분획물로 조제하여 여섯 가지의 추출물 및 분획물을 얻었다. 이들 시료들에 대하여 항산화활성을 측정한 결과 에틸아세테이트 분획물에서 $RC_{50}$ 값이 26.1 ${\mu}g/mL$의 강한 항산화활성을 나타내었다. 염색체 유발 물질인 MNNG(N-methyl-N'-nitro-N-nitro-soguanidine)를 마우스에 50, 100, 150 그리고 200 mg/kg으로 투여한 경우의 소핵생성은 각각 3.7${\pm}$0.7, 4.3${\pm}$0.6, 12.8${\pm}$0.8 그리고 15.6${\pm}$1.1로써 농도증가에 비례적으로 증가하였으며 대조군에서는 1.4${\pm}$0.5의 소핵생성을 나타내었다. MNNG를 150 mg/kg과 메밀싹 추출물을 각각 10, 20, 40 그리고 80 mg/kg으로 동시에 투여한 경우 각각 23.4, 40.6, 56.3 그리고 73.4%의 소핵생성 억제효과를 나타내었다 . 메밀싹 용매 분획물 실험에서는 핵산, 클로로포름, 에틸 아세테이트, 부탄올 그리고 물 분획물이 시료농도 80 mg/kg의 투여군에서 양성대조군에 비해 각각 64.1, 67.9, 75.8, 74.2 및 63.3%의 소핵생성 억제율을 나타내었다. 따라서 메밀싹은 건강식품으로서의 개발가능성을 가진 매우 유용한 원료임을 알 수 있었고, 추후 이러한 생리활성을 나타내는 부분만을 분리, 정제하여 추가적인 검색 및 활용방안에 대하여 충분한 연구가 이루어져야 한다고 사료된다.

Keywords

References

  1. Shim TH. 2000. Studies on the composition and biological activity Korean buckwheat (Fagopyrum esculentum Moench). PhD Dissertation. Gangwon National University, Chunchon. p 1-3
  2. Lee EY. 2003. Studies on biological activities of buckwheat sprout. MS Thesis. Gangwon National University, Chunchon. p 71-72
  3. Griffith JQ, Couch JF, Lindauer MA. 1995. Effect of rutin on increased capillary fragility in man. Proc Soc Exp Bio Med 55: 228-229
  4. Matsubara Y, Kumamoto H, Lizuka Y, Murakami T, Okamoto K, Miyake H, Yokoi K. 1995. Structure and hypotensive effect of flavonoid glycosides in Citrus unshiu peelings. Agric Biol Chem 49: 900-905
  5. Lee JS, Park SJ, Sung KS, Han CK, Lee MH, Jung CW, Kwon TB. 2000. Effects of germinated-buckwheat on blood pressure, plasma glucose and lipid levels of spontaneously hypertensive rats. Korean J Food Sci Technol 32: 206-211
  6. He J, Klag MJ, Whelton PK, Mo JP, Chen JY, Qian MC, Mo PS, He GQ. 1995. Oats and buckwheat intakes and cardiovascular disease risk factors in an ethnic minority of China. Am J Clin Nutr 61: 366-372 https://doi.org/10.1093/ajcn/61.2.366
  7. Hertog MG, Kromhout D, Aracanis C, Blackburn H, Buzina E, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, Pekkarinen M, Simic BS, Toshima H, Feskens EJM, Hollman PCH, Katan MB. 1995. Flavonoid intake and longterm risk of coronary heart disease and cancer in the countries study. Arch Intern Med 155: 381-386 https://doi.org/10.1001/archinte.155.4.381
  8. Keli SO, Hertog MGK, Freskens EJM, Kromhout D. 1996. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: The Zutpen study. Arch Intern Med 154: 637-642 https://doi.org/10.1001/archinte.156.6.637
  9. Lee JS, Lee MH, Chang YK, Ju JS, Son HS. 1995. Effects of buckwheat diet on serum glucose and lipid metabolism in NIDDM. Korean J Nutr 28: 809-816
  10. Lee JS, Son SS, Maeng YS, Chang YK, Ju JS. 1994. Effects of buckwheat on organ on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J Nutr 27: 819-827
  11. Lee JS, Park SJ, Sung KS, Han CK, Lee MH, Jung CW, Kwon TB. 2000. Effects of germinated-buckwheat on blood pressure, plasma glucose and lipid levels of spontaneously hypertensive rats. Korean J Food Sci Technol 32: 206-211
  12. Lee MH, Son HS, Choi OK, Oh SK, Kwon TB. 1994. Changes in physico-chemical properties and mineral contents during buckwheat germination. J Korean Food Nutr 7: 262-273
  13. Kim YS, Kim JG, Lee YS, Kang IJ. 2005. Comparison of the chemical components of buckwheat seed and sprout. J Korean Soc Food Sci Nutr 34: 81-86 https://doi.org/10.3746/jkfn.2005.34.1.081
  14. Choi JS, Park JH, Kim HG, Young HS, Mun SI. 1993. Screening for antioxidant activity of plants and marine algae and its active principles from Prunus davidiana. Korean J Pharmacol 24: 299-303
  15. Schmid W. 1975. The micronucleus test. Mutat Res 31: 9-15 https://doi.org/10.1016/0165-1161(75)90058-8
  16. Kwon TB. 1994. Changes in rutin and fatty acids of buckwheat during germination. Korean J Food Nutr 7: 124-127
  17. Lee SY, Cho SI, Park MH, Kim YK, Choi JE, Park SU. 2007. Growth and rutin production in hairy root cultures of buckwheat (Fagopyrum esculentum M). Prep Biochem biotechnol 37: 239-249 https://doi.org/10.1080/10826060701386729
  18. Kwak CS, Lim SJ, Kim SA, Park SC, Lee MS. 2004. Antioxidative and antimutagenic effects of Korean buckwheat, sorghum, millet and job's tears. J Korean Soc Food Sci Nutr 33: 921-929 https://doi.org/10.3746/jkfn.2004.33.6.921

Cited by

  1. Masou salmon (Oncorhynchus masou) ethanol extract decreases 3-hydroxy-3-methylglutaryl coenzyme A reductase expression in diet-induced obese mice vol.29, pp.2, 2009, https://doi.org/10.1016/j.nutres.2008.11.006
  2. Effect of Brassica rapa Sprouts on Lipid Metabolism in Rats Fed High Fat Diet vol.39, pp.5, 2010, https://doi.org/10.3746/jkfn.2010.39.5.669
  3. Effect of Microwave Assisted Water Extraction on Insoluble Phenolic Compounds through Bioactivity of Fagopyrum esculentum vol.32, pp.6, 2019, https://doi.org/10.7732/kjpr.2019.32.6.723
  4. 일반메밀과 쓴메밀 종실 추출물의 RAW 264.7 대식세포에서 LPS에 의해 유도되는 iNOS 및 염증성 사이토카인 발현 저해를 통한 항염증 효과 비교 vol.51, pp.6, 2019, https://doi.org/10.9721/kjfst.2019.51.6.565
  5. 재배기간에 따른 쓴메밀(Fagopyrum tataricum Gaertner)싹의 항산화 활성 및 생리활성 평가 vol.35, pp.6, 2007, https://doi.org/10.7318/kjfc/2020.35.6.590