DOI QR코드

DOI QR Code

Regulation of β-xylosidase biosynthesis in Paenibacillus sp. DG-22

Paenibacillus sp. DG-22에서의 β-xylosidase 생합성 조절

  • Lee, Tae-Hyeong (Department of Biotechnology, Dongguk University) ;
  • Lim, Pyung-Ok (Department of Science Education, Cheju National University) ;
  • Lee, Yong-Eok (Department of Biotechnology, Dongguk University)
  • 이태형 (동국대학교 과학기술대학 생명공학과) ;
  • 임평옥 (제주대학교 사범대학 과학교육과) ;
  • 이용억 (동국대학교 과학기술대학 생명공학과)
  • Published : 2007.03.30

Abstract

Regulation of ${\beta}-xylosidase$ synthesis in Paenibacillus sp. DC-22 was studied to optimize the enzyme production. ${\beta}-Xylosidase$ synthesis of the Paenibacillus sp. DG-22 was observed to be regulated by carbon sources present in culture media. The synthesis of ${\beta}-xylosidase$ was induced by xylan and methyl ${\beta}-D-xylopyranoside$ (${\beta}MeXyl$) but slightly repressed by readily metabolizable monosaccharides. ${\beta}MeXyl$ was found to be the best substrate for the induction of ${\beta}$-xylosidase and the most effective induction was obtained at a concentration of 10 mg/ml. ${\beta}-Xylosidase$ production showed a cell growth associated profile with the maximum amount formed during the late exponential phase of growth. The presence of glucose and xylose decreased the level of ${\beta}-xylosidase$ activity indicating that its production was subjected to a form of carbon catabolite repression. SDS-PAGE and zymogram techniques demonstrated the induction by ${\beta}MeXyl$ and revealed the presence of one ${\beta}-xylosidase$ of approximately 80 kDa.

효소생산을 최적화하기 위해서 Paenibacillus sp. DG-22에서의 ${\beta}-xylosidase$ 생합성 조절을 연구하였다. Paenibacillus sp. DG-22의 ${\beta}-xylosidase$는 배양액에 존재하는 탄소원에 의해 조절되는 것으로 관찰되었다. ${\beta}-Xylosidase$의 합성은 xylan과 methyl ${\beta}-D-xylopyranoside$ (${\beta}MeXyl$)에 의해 유도되었으나 쉽게 대사되는 단당류에 의해서는 약간 억제되었다. ${\beta}MeXyl$${\beta}-xylosidase$의 유도를 위한 최적의 기질임을 확인하였고 가장 효과적인 유도는 10 mg/ml의 농도에서 얻어졌다. ${\beta}-Xylosidase$의 생산은 세포의 생장과 연관된 양상을 나타내었으며, 대수기 말에 최대양이 형성되었다. Glucose와 xylose가 존재하면 ${\beta}-xylosidase$의 활성 수준이 감소하는 것으로 보아 이 효소의 생합성은 catabolite repression을 받는것으로 보인다. SDS-PAGE와 활성염색 기술을 이용하여 ${\beta}Mexyl$가 이 효소의 생합성을 유도하며 약 80 kDa 크기의 하나의 ${\beta}-xylosidase$가 존재함을 알 수 있었다.

Keywords

References

  1. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3, 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Flores, M. E., M. Prea, O. Rodriguez, A. Malvaez and C. Hultron. 1996. Physiological studies on induction and catabolite repression of ${\beta}$-xylosidase and endoxylanase in Streptomyces CH-M-1035. J. Biotechnol. 49, 179-187 https://doi.org/10.1016/0168-1656(96)01542-8
  4. Ghosh, M. and G. Nanda. 1994. Physiological studies on xylose induction and glucose repression of xylanolytic enzymes in Aspergillus sydowii MG 49. FEMS Microbiol. Lett. 117, 151-156 https://doi.org/10.1111/j.1574-6968.1994.tb06757.x
  5. Godden, B., T. Legon, P. Helvenstein and M. Penninckx. 1989. Regulation of the production of hemicellulolytic and cellulolytic enzymes by a Streptomyces sp. growing on lignocellulose. J. Gen. Microbiol. 135, 285-292
  6. Kristufek, D., S. Zeilinger and C. P. Kubicek. 1995. Regulation of ${\beta}$-xylosidase formation by xylose in Trichoderma reesei. Appl. Microbiol. Biotechnol. 42, 713-717 https://doi.org/10.1007/BF00171950
  7. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680-685 https://doi.org/10.1038/227680a0
  8. Lee, Y. E. 2003. Optimization of xylanase production from Paenibacillus sp. DG-22. Kor. J. Life Sci. 13, 618-625 https://doi.org/10.5352/JLS.2003.13.5.618
  9. Lee, Y. E. 2004. Isolation and characterization of thermostable xylanaseproducing Paenibacillus sp. DG-22. Kor. J. Microbiol. Biotechnol. 32, 22-28
  10. Li, K., P. Azadi, R. Collins, J. Tolan, J. S. Kim and K.-E. L. Eriksson. 2000. Relationships between activities of xylanases and xylan structures. Enz. Microb. Technol. 27, 89-94 https://doi.org/10.1016/S0141-0229(00)00190-3
  11. Lindner, C., J. Stulke and M. Hecker. 1994. Regulation of xylanolytic enzymes in Bacillus subtilis. Microbiology 140, 753-757 https://doi.org/10.1099/00221287-140-4-753
  12. Nanmori, T., T. Watanabe, R. Shinke, A. Kohno and Y. Kawamura. 1990. Purification and properties of thermostable xylanase and ${\beta}$-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J. Bacteriol. 172, 6669-6672 https://doi.org/10.1128/jb.172.12.6669-6672.1990
  13. Perez-Avalos, O., T. Ponce-Noyola, I. Magana-Plaza and M. I. Torre. 1996. Induction of xylanase and ${\beta}$-xylosidase in Cellulomonas flavigena growing on different carbon sources. Appl. Microbiol. Biotechnol. 46, 405-409
  14. Rapp, P. and F. Wagner. 1986. Production and properties of xylan-degrading enzymes from Cellulomonas uda. Appl. Environ. Microbiol. 51, 746-752
  15. Rothe, G. M. 1994. Electrophoresis of enzymes: laboratory methods. Springer-Verlag, Berlin
  16. Saha, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279-291 https://doi.org/10.1007/s10295-003-0049-x
  17. Saxena, S., H. P. Fierobe, C. Gaudin, F. Guerlesquin and J. P. Belaich. 1995. Biochemical properties of a ${\beta}$-xylosidase from Clostridium cellulolyticum. Appl. Environ. Microbiol. 61, 3509-3512
  18. Simao, R. C., C. G. Souza and R. M. Peralta. 1997. Induction of xylanase in Aspergillus tamarii by methyl ${\beta}$-D-xyloside. Appl. Microbiol. Biotechnol. 47, 267-271 https://doi.org/10.1007/s002530050925
  19. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39-67 https://doi.org/10.3109/07388559709146606
  20. Williams, A. G. and S. E. Withers. 1992. The regulation of xylanolytic enzyme formation by Bytyrivibrio fibrisolvens NCFB 2249. Lett. Appl. Microbiol. 14, 194-198 https://doi.org/10.1111/j.1472-765X.1992.tb00683.x
  21. Wong, K. K. Y. and J. N. Saddler. 1992. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12, 413-435 https://doi.org/10.3109/07388559209114234

Cited by

  1. Cloning, Sequencing and Expression of the Gene Encoding a Thermostable β-Xylosidase from Paenibacillus sp. DG-22 vol.17, pp.9, 2007, https://doi.org/10.5352/JLS.2007.17.9.1197
  2. β-1,4-Xylosidase Activity of Leuconostoc Lactic Acid Bacteria Isolated from Kimchi vol.43, pp.2, 2011, https://doi.org/10.9721/KJFST.2011.43.2.169