DOI QR코드

DOI QR Code

Molecular phylogeny of moon jellyfish Aurelia aurita Linnaeus collected from Yeosu waters in Korea based on nuclear and mitochondrial DNA sequences

여수해역에서 채집한 보름달 둥근 물해파리의 핵과 미토콘드리아 DNA 염기서열을 이용한 유연 관계 분석

  • 김숙양 (국립수산과학원 남해수산연구소) ;
  • 조은섭 (국립수산과학원 남해수산연구소)
  • Published : 2007.03.30

Abstract

This study presents the molecular phylogenetic analysis of Korean Aurelia aurita Linnaeus collected from Yeosu in the southern waters of Korea using nuclear ITS1 region and mitochondrial COI gene sequences. The use of oligonucleotide primers F5 (forward) and R5 (reverse) targeted to ITS1 and LCO1490 (forward) and HCO2198 (reverse) targeted to COI amplified 267 bp and 643 bp fragments, respectively. The shortest genetic distance towards the ITS1 region is estimated at 0.023 when comparing Korean A. aurita to Aurelia sp. collected from California, USA. In particular, Korean and American/Swedish A. aurita were located far away in terms of genetic distance, ranging from 0.393 to 0.395. On the other hand, the genetic distance between Korean and English/Turkish/Swedish/American A. aurita regarding the mitochondrial DNA COI gene ranged from 0.201 to 0.205. However, a sister-ship with Korean and American A. aurita showed an extremely high bootstrap value (100%). The predicted secondary RNA structure of the mitochondrial DNA COI gene showed many different folding structures with a similar energy between Korean and American A. aurita. These results suggest that ITS1 and the mitochondrial DNA COI gene could be used as genetic markers for identification of the biogeographic populations.

본 연구는 여수연안해역에서 채 집 한 보름달 둥근 물해파리를 대상으로 ITS 부위와 미토콘드리아 유전자 염기서열을 이용하여 계통유연관계를 보왔다. ITS 부위를 증폭시키 기 위하여 F5와 R5 primer, 미토콘드리아 COI 유전자 증폭을 위하여 LCO1490과 HCO2198 primer를 사용했다. 증폭은 ITS에서 267 bp, COI에서 643 bp로 나타났다. 한국산 물해파리와 미국 캘리포니아에서 채집한 Aurelia sp.가 유전적 거리가 가장 짧은 0.023을 보인 반면에, 한국산과 미국산, 스웨덴산 물해파리는 동일한 종이지만 유전적 거리가 0.393에서 0.395로 매우 먼 것으로 나타났다. COI유전자의 경우 한국산과 영국산, 터어키산, 스웨덴산, 미국산 물해파리의 유전적 거리 범위는 0.201에서 0.205로 나타났다. 그러나 한국산과 미국산의 bootstrap은 100% 자매군으로 보였다. COI 유전자에 대한 한국산과 미국산 2차 RNA folding 구조를 볼 때 동일한 에너지 하에서도 상이한 2차 folding을 보였다. 따라서 ITS1과 COI 유전자는 보름달 둥근 물해파리 개체군의 생물지리학적 분포 조사를 위하여 유용한 도구로 활용될 것으로 추측된다.

Keywords

References

  1. Arai, M. N. 1997. A Functional Biology of Scyphzoan. Chapman & Hall, London, pp. 1-227
  2. Arai, M. N. 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451, 69-87 https://doi.org/10.1023/A:1011840123140
  3. Asahida, T., T. Kobayashi, K. Saitoh and J. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish. Sci. 62, 727-730 https://doi.org/10.2331/suisan.62.727
  4. Bamstedt, U., B. Wild and M. B. Martinussen. 2001. Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa). Mar. Biol. 139, 641-650 https://doi.org/10.1007/s002270100623
  5. Dawson, M. N. and D. K. Jacobs. 2001a. Molecular evidence for cyptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol. Bull. 200, 92-96 https://doi.org/10.2307/1543089
  6. Dawson, M. N. and L. E. Martin. 2001b. Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451, 259-273 https://doi.org/10.1023/A:1011869215330
  7. Dawson, M. N. 2003. Macro-morphlological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Mar. Biol. 143, 369-379 https://doi.org/10.1007/s00227-003-1070-3
  8. Donovan, S. K. 1987. The fit of the continents in the late Precambrian. Nature 327, 139-141 https://doi.org/10.1038/327139a0
  9. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Department of Genetics, University of Washington, Seattle
  10. Folmer, O., M. Black, R. Lutz and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294-299
  11. Gershwink, L. A. 2001. Systematics and biogeography of the jellyfish Aurelia labiata (Cnidaria: Schyphozoa). Biol. Bull. 201, 104-119 https://doi.org/10.2307/1543531
  12. Gilber, D. G. 1990. LoopViewer, a Macintosh program for visualizing RNA secondary structure. Publ. Electronically on the Internet, available to anonymous ftp to iubio.bio. indiana.edu
  13. Greenber, N., R. L. Garthwaite and D. C. Potts. 1996. Allozyme and morphological evidence for a newly introduced species of Aurelia in San Francisco Bay, California. Mar. Biol. 125, 401-410 https://doi.org/10.1007/BF00346320
  14. Hamner, W. M. and R. M. Jenssen. 1974. Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. Am. Zool. 14, 833-849 https://doi.org/10.1093/icb/14.2.833
  15. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 116, 111-120
  16. Knowlton, N. 2000. Molecular genetic analyses of species boundaries in the sea. Hydrogiologia 420, 73-90 https://doi.org/10.1023/A:1003933603879
  17. Kramp, P. L. 1961. Synopsis of the medusae of the world. J. Mar. Biol. Assoc. UK 40, 1-469
  18. Kramp, P. L. 1968. The Scyphomedusae collected by the Galathea expedition 1950-52. Vidensk. Medd. Dan. Naturhist. Foren. 131, 67-98
  19. Larson, R. J. 1990. Scyphomedusae and cubomedusae from the Eastern Pacific. Bull. Mar. Sci. 47, 546-556
  20. Lee, J. S., J. S. Hwang, S. M. Lee, S. H. Sung, Y. S. Kim and D. S. Suh. 1999. Development of RFLP markers from silkworm (Bombyx mori). Korean J. Genetics 21, 319-327
  21. Lee, S. Y. and S. H. Kim. 2003. Genetic variation and discrimination of Korean arkshell Scapharca species (Bivalvia, Arcoida) based on mitochondrial COI gene sequences and PCR-RFLP. Korean J. Genetics 25, 309-315
  22. Lucas, C. H. 2001. Reproduction and life history strateges of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451, 229-246 https://doi.org/10.1023/A:1011836326717
  23. Mayer, A. G. 1917. Report upon the Scyphomedusae collected by the United States Bureau of Fisheries steamer 'Albatross' in the Philippine islands and Malay Archipelago. Bull. U.S. Nat. Mus. 100, 175-233
  24. Medlin, L., H. J. Elwood, S. Stickel and M. L. Sogin. 1988. The characterization of enaymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491-499 https://doi.org/10.1016/0378-1119(88)90066-2
  25. Moller, H. 1980. Scyphomedusae as predators and food competitors of larval fish. Meeresforschung 28, 90-100
  26. Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325 https://doi.org/10.1093/nar/8.19.4321
  27. Mutlu, E. 2001. Distribution and abundance of moon jellyfish (Aurelia aurita) and its zooplankton food in the Black Sea. Mar. Biol. 138, 329-339 https://doi.org/10.1007/s002270000459
  28. Park, J. H. 2000. First record of two Scyphomedusae (Cnidaria, Scyphozoa) in Korea. Kor. J. Syst. Zool. 16, 79-85
  29. Purcell, J. E., W. M. Graham and H. J. Dumont. 2001. Jellyfish Blooms: Ecological and Social Importance., Kluwer Academic Publication, Boston, pp. 1-333
  30. Russel, F. S. 1970. Medusae of the British Isles. II. Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae., Cambridge University Press, Cambridge, pp. 1-419
  31. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  32. Schroth, W., G. Jarms, B. Streit and B. Schierwater. 2002. Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evol. Biol. 2, 1-10 https://doi.org/10.1186/1471-2148-2-1
  33. Thomson, J. D., D. G. Higgins and T. J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, position-specific fap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  34. Zuker, M. 1989. On finding all suboptimal folding of an RNA molecule. Science 244, 48-52 https://doi.org/10.1126/science.2468181