References
- Akaba, S., M. Seo, N. Dohmae, K. Takio, H. Sekimoto, Y. Kamiya, N. Furuya, T. Komano and T. Koshiba, 1999. Production of homo- and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana. J. Biochem. 126, 395-401. https://doi.org/10.1093/oxfordjournals.jbchem.a022463
- Badwey, J. A., J. M, Robinson, M. J. Karnovsky and M. L. Karnovsky. 1981. Superoxide production by an unusual aldehyde oxidase in guinea pig granulocyte. Characterization and cytochemical localization. J. Biol. Chem. 256, 3479-3486.
- Barker-Bridgers, M., D. M. Ribnicky, J. D. Cohen and A. M. Jones. 1998. Red-light-regulated growth: Changes in the abundance of indoleacetic acid in the maize (Zea mays L.) mesocotyl. Planta 204, 207-211. https://doi.org/10.1007/s004250050248
- Bittner, B., M. Oreb and R. R. Mendel (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana, J. Biol. Chem. 276. 40381-40384. https://doi.org/10.1074/jbc.C100472200
- Bower, P. J., H. M. Brown and W. K. Purves. 1978. Cucumber seedling indoleacetaldehyde oxidase. Plant Physiol. 61, 107-110. https://doi.org/10.1104/pp.61.1.107
- Hetz, W, F. Hochholdinger, M. Schwall and G. Feix. 1996. Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J. 10, 845-857. https://doi.org/10.1046/j.1365-313X.1996.10050845.x
- Jiang, X. Y., R. T. Omarov, S. Z. Yesbergenova and M. Sagi. 2004. The effect of molybdate and tungstate in the growth medium on abscisic acid content and the Mo-hydroxylases activities in barley (Hordeum vulgare L). Plant Sci. 167, 297-304. https://doi.org/10.1016/j.plantsci.2004.03.025
- Kim, Y. J., Y. J. Oh and W. J. Park. 2006. HPLC-based quantification of indole-3-acetic acid in the primary root tip of maize. J. Nano & Bio Tech. 3, 40-45.
- Koshiba, T., E, Saito, N. Ono, N. Yamamoto and M. Sato. 1996. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol. 110, 781-789. https://doi.org/10.1104/pp.110.3.781
- Mendel, R. R. and F. Bittner. 2006. Cell biology of molybdenum. Biochimica. Biophysica. Acta. 1763, 621-635. https://doi.org/10.1016/j.bbamcr.2006.03.013
- Normanly, J. 1997. Auxin Metabolism. Physiol. Plant 100, 431-442. https://doi.org/10.1111/j.1399-3054.1997.tb03047.x
- Omarov, R. T., S. Akaba, T. Koshiba and S. H. Lips. 1999. Aldehyde oxidase in roots, leaves and seeds of barley (Hordeum vulgare L.). J. Exp. Bot. 50, 63-69. https://doi.org/10.1093/jexbot/50.330.63
- Park, W. J., V. Kriechbaumer, A. Mueller, M. Piotrowski, R. B. Meeley, A. Gierl, E. Glawischnig. 2003. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol. 133, 794-802. https://doi.org/10.1104/pp.103.026609
- Rajagopalan, K. V. and P. Handler. 1966. Aldehyde oxidase. Methods Enzymol. 9, 364-368. https://doi.org/10.1016/0076-6879(66)09075-X
- Rodriguez-Trelles, F., R. Tarrio and F. J. Ayala. 2003. Convergence neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc. Natl. Acad. Sci. USA 100, 13413-13417. https://doi.org/10.1073/pnas.1835646100
- Sekimoto, H., M. Seo, N. Dohmae, K. Takio, Y. Kamiya and T. Koshiba. 1997. Cloning and molecular characterization of plant aldehyde oxidase. J. Biol. Chem. 272, 15280-15285. https://doi.org/10.1074/jbc.272.24.15280
- Seo, M. and T. Koshiba. 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7, 41-48. https://doi.org/10.1016/S1360-1385(01)02187-2
- Seo, M., A. J. M. Peeters, H. Koiwai, T. Oritani, A. Marion-Poll, J. A. Zeevart, M. Koornneef, Y. Kamiya and T. Koshiba. 2000. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 97, 12908-12913. https://doi.org/10.1073/pnas.220426197
- Shaw, S. and E. Jayatilleke. 1990. The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem. J. 268, 579-583. https://doi.org/10.1042/bj2680579
- van der Zaal, B. J., L. W. Neuteboom, J. E. Pinas, A. N. Chardonnens, H. Schat, J. A. Verkleij and P. J. Hooykaas. 1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Mol. Biol. 39, 273-287. https://doi.org/10.1023/A:1006104205959
- Yesbergenova, Z., G. Yang, E. Oron, D. Soffer, R. Fluhr and M. Sagi. 2005. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J. 42, 862-876. https://doi.org/10.1111/j.1365-313X.2005.02422.x
- Zdnek-Zastocka, E., R. T. Omarov, T. Koshiba and H S. Lips. 2004. Activity and protein level of AO isoforms in pea plants (Pisum saiioum L.) during vegetative development and in response to stress conditions. J. Exp. Bot. 55, 1361-1369. https://doi.org/10.1093/jxb/erh134