DOI QR코드

DOI QR Code

JSAP1과 Kinesin Light Chain 1의 결합 및 결합부위 규명

JSAP1 Interacts with Kinesin Light Chain 1 through Conserved Binding Segments

  • 김진상 (인제대학교 의과대학 생화학교실, 신경과학교실) ;
  • 이철희 (경상대학교 의과대학 신경외과학교실) ;
  • 박혜영 (인제대학교 의과대학 생화학교실) ;
  • 예성수 (인제대학교 의과대학 생화학교실) ;
  • 장원희 (인제대학교 의과대학 생화학교실) ;
  • 이상경 (인제대학교 의과대학 생화학교실, 정신과학교실) ;
  • 박영홍 (인제대학교 의과대학 생화학교실) ;
  • 차옥수 (진주교육대학교 체육교육학과) ;
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Kim, Sang-Jin (Departments of Biochemistry, Neurology, Inje University) ;
  • Lee, Chul-Hee (Department of Neorosurgery, College of Medicine, Gyeongsang National University) ;
  • Park, Hye-Young (Departments of Biochemistry, Inje University) ;
  • Yea, Sung-Su (Departments of Biochemistry, Inje University) ;
  • Jang, Won-Hee (Departments of Biochemistry, Inje University) ;
  • Lee, Sang-Kyeong (Departments of Biochemistry, Psychiatry, Inje University) ;
  • Park, Yeong-Hong (Departments of Biochemistry, Inje University) ;
  • Cha, Ok-Soo (Department of Physical Education, Jinju National University of Education) ;
  • Moon, Il-Soo (Departments of Anatomy, College of Medicine, Dongguk University) ;
  • Seog, Dae-Hyun (Departments of Biochemistry, Inje University)
  • 발행 : 2007.07.30

초록

KIF5는 2분자의 kinesin heavy chain (KHC)과 2분자의 kinesin light cham (KLC)으로 구성되며 미세소관과 직접 결합한다. KIF5는 여러가지 세포 내 소기관을 이동시키나 KIF5가 이동시키는 운반체가 어떻게 특이적으로 결합하는지는 아직 밝혀지지 못하였다. 본 연구에서 효모 two-hybrid system을 사용하여 KLC1의 tetratricopeptide repeats (TRP) 부위와 결합하는 세포 내의 단백질을 분리하였다. 결과 KLC1와 특이적으로 결합하는JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIP3)을 분리하였다. 이러한 결합은 KLC1의 TRP1, 2 영역과 JSAP1의 leucine zipper 영역이 결합에 관여하며, 또한 효모 two-hybrid assay에서 JSAP1은 KLC2와 결합하지만 신경세포에서 발현하는 KIF5A, KIF5C 그리고 모든 세포에서 발현하는 KIF5B와는 결합하지 않았다. 단백질간의 결합을 pull-down assay로 확인한 결과 KLC1은 glutathione S-transferase (GST)와는 결합하지 않으나 GST결한 JSAP1과는 결합하였다. 또한 생쥐의 뇌 파쇄 액으로부터 JSAP1 항체로 면역침강을 행한 결과 KLC1은 JSAP1과 같이 침강하였다. 이러한 결과들은 KLC1은 JSAP1과 결합하며, JSAP1은 KLC1의 수용체로세포 내 KIF5의 수송의 매개 단백질로 작용함을 시사한다.

A conventional kinesin, KIF5/kinesin-I, is composed of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) and binds directly to microtubules. KIF5 motor mediates the transport of various membranous organelles, but the mechanism how they recognize and bind to a specific cargo has not yet been completely elucidated. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tetratricopeptide repeats (TRP) of KLCI and found a specific interaction with JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIPP3). The yeast two-hybrid assay demonstrated that the TRP 1,2 domain-containing region of KLCI mediated binding to the leucine zipper domain of JSAP1. JSAP1 also bound to the TRP region of lac2 but not to neuronal KIF5A, KIF5C and ubiquitous KIF5B in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the GST pull-down assay and by co-immunoprecipitation. KLCI and KIF5B interacted with GST-ISAP1 fusion proteins, but not with GST alone. An antibody to JSAPI specifically co-immunoprecipitated KIF5s associated with JSAP1 from mouse brain extracts. These results suggest that JSAP1, as KLC1 receptor, is involved in the KIF5 mediated transport.

키워드

참고문헌

  1. Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296 https://doi.org/10.1083/jcb.119.5.1287
  2. Blatch, G. L. and M. Lassle. 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21, 932-939 https://doi.org/10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N
  3. Bowman, A. B., A. Kamal, B. W. Ritchings, A. V. Philp, M. McGrail, J. G. Gindhart and L. S. Goldstein. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583-594 https://doi.org/10.1016/S0092-8674(00)00162-8
  4. Byrd, D. T., M. Kawasaki, M. Walcoff, N. Hisamoto, K. Matsumoto and Y. Jin. 2001. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32, 787-800 https://doi.org/10.1016/S0896-6273(01)00532-3
  5. Gauger, A. K. and L. S. Goldstein. 1993. The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain. J. Biol. Chem. 268, 13657-13666
  6. Gindhart, J. C. Jr. and L. S. Goldstein. 1996. Tetratrico peptide repeats are present in the kinesin light chain. Trends Biochem. Sci. 21, 52-53 https://doi.org/10.1016/S0968-0004(96)80180-0
  7. Graves, M. R. and D. Barford. 1999. Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383-389 https://doi.org/10.1016/S0959-440X(99)80052-9
  8. Ha, H Y., I. H Cho, K. W. Lee, K. W. Lee, J. Y. Song, K. S. Kim, Y. M. Yu, J. K. Lee, J. S. Song, S. D. Yang, H. S. Shin and P. L. Han. 2005. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev. Biol. 277, 184-199 https://doi.org/10.1016/j.ydbio.2004.09.019
  9. Hirokawa, N. and R. Takemura. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214 https://doi.org/10.1038/nrn1624
  10. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526 https://doi.org/10.1126/science.279.5350.519
  11. Ito, M. K., Yoshioka, M. Akechi, S. Yamashita, N. Takamatsu, K. Sugiyama, M. Hibi, Y. Nakabeppu, T. Shiba and K. I. Yamamoto. 1999. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol. Cell Biol. 19, 7539-7548 https://doi.org/10.1128/MCB.19.11.7539
  12. Kamal, A, A Almenar-Queralt, J. F. LeBlanc, E. A. Roberts and L. S. Goldstein. 2001. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414, 643-648 https://doi.org/10.1038/414643a
  13. Kamal, A, G. B. Stokin, Z. Yang, C. H. Xia and L. S. Goldstein. 2000. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449-459 https://doi.org/10.1016/S0896-6273(00)00124-0
  14. Kanai, Y., Y. Okada, Y. Tanaka, A Harada, S. Terada and N. Hirokawa. 2000. KIF5C, A novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384 https://doi.org/10.1523/JNEUROSCI.20-17-06374.2000
  15. Karcher, R. L., S. W. Deacon and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27 https://doi.org/10.1016/S0962-8924(01)02184-5
  16. Kelkar, N., M. H. Delmotte, C. R. Weston, T. Barrett, B. J. Sheppard, R. A Flavell and R. J. Davis. 2003. Morphogenesis of the telencephalic commissure requires scaffold protein JNK-interacting protein 3 (JIP3). Proc. Natl. Acad. Sci. USA. 100, 9843-9848 https://doi.org/10.1073/pnas.1733944100
  17. Kelkar, N., S. Gupta, M. Dickens and R. J. Davis. 2000. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol. Cell Biol. 20, 1030-1043 https://doi.org/10.1128/MCB.20.3.1030-1043.2000
  18. Konecna, A., R. Frischknecht, J. Kinter, A. Ludwig, M. Steuble, V. Meskenaite, M. Indermuhle, M. Engel, C. Cen, J. M. Mateos, P. Streit and P. Sonderegger. 2006. Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol. Biol. Cell 8, 3651-3663
  19. Meng, Y. X., G. W. Wilson, M. C. Avery, C. H. Varden and R. Balczon. 1997. Suppression of the expression of a pancreatic beta-cell form of the kinesin heavy chain by antisense oligonucleotides inhibits insulin secretion from primary cultures of mouse beta-cells. Endocrinology 138, 1979-1987 https://doi.org/10.1210/en.138.5.1979
  20. Miki, H., M. Setou, K. Kaneshiro and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA. 98, 7004-7011 https://doi.org/10.1073/pnas.111145398
  21. Morrison, D. K. and R. J. Davis. 2003. Regulation of MAP kinase signaling modules by scaffold prate ins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91-118 https://doi.org/10.1146/annurev.cellbio.19.111401.091942
  22. Nonaka, S., Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido and N. Hirokawa. 1998. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein, Cell. 95, 829-837 https://doi.org/10.1016/S0092-8674(00)81705-5
  23. Rahman, A., D. S. Friedman and L. S. Goldstein. 1998. Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J. Biol. Chem. 273, 15395-15403 https://doi.org/10.1074/jbc.273.25.15395
  24. Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Habor Laboratory, Cold Spring Habor, New York
  25. Scholey, J. M., J. Heuser, J. T. Yang and L. S. Goldstein. 1989. Identification of globular mechanochemical heads of kinesin. Nature 338, 355-357 https://doi.org/10.1038/338355a0
  26. Seog, D. H., D. H. Lee and S. K. Lee. 2004. Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J. Korean Medical Science 19, 1-7 https://doi.org/10.3346/jkms.2004.19.1.1
  27. Setou, M., T. Nakagawa, D. H. Seog and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802 https://doi.org/10.1126/science.288.5472.1796
  28. Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi and N. Hirokawa. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87 https://doi.org/10.1038/nature743
  29. Stenoien, D. L. and S. T. Brady. 1997. Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 8, 675-689 https://doi.org/10.1091/mbc.8.4.675
  30. Stockinger, W., C. Brandes, D. Fasching, M. Hermann, M. Gotthardt, J. Herz, W. J. Schneider and J. Nimpf. 2000. The reelin receptor ApoER2 recruits JNK-interacting proteins-l and -2. J. Biol. Chem. 275, 25625-25632 https://doi.org/10.1074/jbc.M004119200
  31. Takeda, S., H. Yamazaki, D. H. Seog, Y. Kanai, S. Terada and N. Hirokawa. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265 https://doi.org/10.1083/jcb.148.6.1255
  32. Takino, T., M. Nakada, H. Miyamori, Y. Watanabe, T. Sato, D. Gantulga, K. Yoshioka, K. M. Yamada and H. Sato. 2005. JSAP1/JIP3 cooperates with focal adhesion kinase to regulate c-Jun N-terminal kinase and cell migration. J. Biol. Chem. 280, 37772-37781 https://doi.org/10.1074/jbc.M505241200
  33. Vale, R. D. and R. J. Fletterick. 1997. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745-777 https://doi.org/10.1146/annurev.cellbio.13.1.745
  34. Vale, R. D. 2003. The molecular motor toolbox fur intracellular transport. Cell 112, 467-480 https://doi.org/10.1016/S0092-8674(03)00111-9
  35. Verhey, K. J., D. Meyer, R. Deehan, J. Blenis, B. J. Schnapp, T. A. Rapoport and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959-970 https://doi.org/10.1083/jcb.152.5.959
  36. Yang, J. T., R. A. Laymon and L. S. Goldstein. 1989. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879-889 https://doi.org/10.1016/0092-8674(89)90692-2

피인용 문헌

  1. Direct Interaction of KIF5s and Actin-Based Transport Motor, Myo9s vol.21, pp.8, 2011, https://doi.org/10.5352/JLS.2011.21.8.1076
  2. Betaine-γ-aminobutyric Acid Transporter 1 (BGT-1/mGAT2) Interacts with the PDZ Domain of Munc-18 Interacting Proteins (Mints) vol.22, pp.9, 2012, https://doi.org/10.5352/JLS.2012.22.9.1159
  3. Kinesin Superfamily-associated Protein 3 (KAP3) Mediates the Interaction between Kinesin-II Motor Subunits and HS-1-associated Protein X-1 (HAX-1) through Direct Binding vol.23, pp.8, 2013, https://doi.org/10.5352/JLS.2013.23.8.978
  4. APP Tail 1 (PAT1) Interacts with Kinesin Light Chains (KLCs) through the Tetratricopeptide Repeat (TPR) Domain vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1608
  5. PtdIns(3,5)P25-phosphatase Fig4 Interacts with Kinesin Superfamily 5A (KIF5A) vol.24, pp.1, 2014, https://doi.org/10.5352/JLS.2014.24.1.14
  6. The STAR RNA Binding Proteins SAM68, SLM-1 and SLM-2 Interact with Kinesin-I vol.21, pp.9, 2011, https://doi.org/10.5352/JLS.2011.21.9.1226