DOI QR코드

DOI QR Code

Effect of Gamma Irradiation on the Physical Properties of Alginic Acid and λ-Carrageenan

감마선 조사가 알긴산과 카라기난의 물리적 특성에 미치는 영향

  • Song, Eu-Jin (Faculty of Food Science and Biotechnology/Institute of Food Science, Pukyong National University) ;
  • Lee, So-Young (Faculty of Food Science and Biotechnology/Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong-Woo-Ri (Faculty of Food Science and Biotechnology/Institute of Food Science, Pukyong National University) ;
  • Park, Jin-Gyu (Team for Radiation Food Science and Biotechnology, Korea Atomic Energy Research Institute) ;
  • Kim, Jae-Hun (Team for Radiation Food Science and Biotechnology, Korea Atomic Energy Research Institute) ;
  • Lee, Ju-Woon (Team for Radiation Food Science and Biotechnology, Korea Atomic Energy Research Institute) ;
  • Byun, Myung-Woo (Team for Radiation Food Science and Biotechnology, Korea Atomic Energy Research Institute) ;
  • Ahn, Dong-Hyun (Faculty of Food Science and Biotechnology/Institute of Food Science, Pukyong National University)
  • 송유진 (부경대학교 식품생명공학부/식품연구소) ;
  • 이소영 (부경대학교 식품생명공학부/식품연구소) ;
  • 김꽃봉우리 (부경대학교 식품생명공학부/식품연구소) ;
  • 박진규 (한국원자력연구소 방사선연구원 방사선이용부) ;
  • 김재훈 (한국원자력연구소 방사선연구원 방사선이용부) ;
  • 이주운 (한국원자력연구소 방사선연구원 방사선이용부) ;
  • 변명우 (한국원자력연구소 방사선연구원 방사선이용부) ;
  • 안동현 (부경대학교 식품생명공학부/식품연구소)
  • Published : 2007.07.30

Abstract

This study was carried out to find the effect of ${\gamma}$ -irradiation on the physical properties of alginic acid and ${\lambda}$-carrageenan solution. Alginic acid and ${\lambda}$-carrageenan aqueous solution were irradiated with $Co^{60}$ ${\gamma}$ -rays in dosages ranging from 3 to 100 kGy, and then the molecular weight, viscosity and color were measured. The molecular weight of alginic acid and ${\lambda}$-carrageenan solution were decreased as the ${\gamma}$ -irradiation dosage increased. In addition, the viscosity of irradiated alginic acid and ${\lambda}$-carrageenan solution were decreased depending upon the ${\gamma}$ -irradiation dosage, too. The high dosage irradiated alginic acid and ${\lambda}$-carrageenan solution's color were changed to yellow. These results suggest that low dosage of ${\gamma}$ -irradiation from 3 to 20 kGy is a very effective method for producing low-molecular alginic acid and ${\lambda}$-carrageenan.

감마선 조사가 alginic acid와 ${\lambda}$-carrageenan의 물리적 특성 변화에 미치는 영향을 알아보기 위해 3, 5, 7, 10, 20, 100 kGy의 감마선을 alginic acid와 ${\lambda}$-carrageenan 용액에 조사하여 분자량, 점도, 색도의 변화를 측정하였다. Alginic acid 수용액의 0${\sim}$100 kGy범위의 감마선 처리는 약 1,600 kDa에서 4.5 kDa까지 저분자화를 가져왔고, ${\lambda}$-carrageenan 수용액은 1,300 kDa에서 4.5 KDa까지 분자량이 감소하는 결과를 보였다. 점도 측정 결과 alginic acid의 경우 29.4 cP에서 조사선량에 비례하여 감소하였으며 20 kGy 조사구에서는 1.23 cP로 낮아졌다. ${\lambda}$-Carrageenan은 23.1 cP에서 1.02 cP로 조사선량이 증가할수록 점도는 감소하였다. 명도는 alginic acid는 조사구가 비조사구보다 높게 나타났으며 ${\lambda}$-carrageenan은 높거나 유사하게 나타났다. 적색도는 alginic acid와 ${\lambda}$-carrageenan 모두 선량에 비례하여 감소하였으며, 황색도는 100 kGy 조사구에서 비조사구에 비해 매우 높게 나타났다. 이상의 결과로 alginic acid와 ${\lambda}$-carrageenan 용액에 감마선을 조사할 경우 20 kGy 미만의 저선량에서 조사선량이 증가할수록 분자량과 점도가 유의성있게 감소하였으며, 100 kGy의 고선량 조사를 제외하고는 갈변이 일어나지 않아 감마선 조사가 alginic acid와 ${\lambda}$-carrageenan의 저분자화에 매우 유용한 방법으로 사용될 수 있을 것으로 사료된다.

Keywords

References

  1. Haug A, Lasem B, Smidsrod O. 1966. Study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20: 183-190 https://doi.org/10.3891/acta.chem.scand.20-0183
  2. Haug A, Lasem B, Smidsrod O. 1967. Studies on the sequence of the uronic acid residues in alginic acid. Acta Chem Scand 21: 691-704 https://doi.org/10.3891/acta.chem.scand.21-0691
  3. Penman A, Sanderson GR. 1972. A method for the determination of uronic acid sequence in alginate. Carbohydr Res 25: 273-282 https://doi.org/10.1016/S0008-6215(00)81637-7
  4. Philips GO, Williams PA. 1984. Gums and Stabilizers for the Food Industry. Pergamon Press, London. p 422-424
  5. Whistler RL, BeMiller JN. 1973. Industrial Gums. Academic Press, New York, NY, USA. p 422-424
  6. Kim KH, Cheng DJ. 1984. Optimum conditions for extracting alginic acid from Undaria pinnatifida and amino acid composition of its extraction residue. Korean J Food Sci Technol 16: 336-340
  7. Sosulski FW, Cadden AM. 1982. Composition and physiological properties of several sources of dietary fiber. J Food Sci 47: 1472-1477 https://doi.org/10.1111/j.1365-2621.1982.tb04964.x
  8. Jeong HJ, Lee SA, Moon PD, Na HJ, Park RK, Um JY, Kim HM, Hong SH. 2006. Alginic acid has anti-anaphylactic effects and inhibits inflammatory cytokine expression via suppression of nuclear factor-$\kappa$B activation. Clin Exp Allergy 36: 785-794 https://doi.org/10.1111/j.1365-2222.2006.02508.x
  9. Stanley, NF. 1990. Food gels. Elsevier Applied Science, London & New York. p 79-120
  10. Park YH, Chang DS, Kim SB. 1995. Fisheries processing and utilization. Hyungsul Pub., Seoul, Korea. p 290-293
  11. Araki CL. 1965. Some recent studies on the polysaccarides of agarophytes. Pergamin Press, London. p 3-7
  12. Nishino T, Nagumo T. 1992. Anticoagulant antithrombin activities of oversulfated fucans. Cabohydr Res 229: 355- 362 https://doi.org/10.1016/S0008-6215(00)90581-0
  13. Huamao Y, Jinming S, Xuegang L, Ning L, Jicui D. 2006. Inmmunomodulation and antitumor activity of $\kappa$-carrageenan oligosaccharides. Cancer Lett 243: 228-234 https://doi.org/10.1016/j.canlet.2005.11.032
  14. Tsuji RF, Hoshino K, Noro Y, Tsuji NM, Kurokawa T, Masuda T, Akira S, Kowak B. 2003. Suppression of allergic reaction by $\lambda$-carrageenan: toll-like receptor 4/My D88-dependent and -independent modulation of immunity. Clin Exp Allergy 33: 249-258 https://doi.org/10.1046/j.1365-2222.2003.01575.x
  15. Joo DS, Lee JS, Park JJ, Cho SY, Kim HK, Lee EH. 1996. Preparation of oligosaccharides from alginic acid by enzymatic hydrolysis. Korean J Food Sci Technol 28: 146-151
  16. Takeuchi T, Murata K, Kusakabe I. 1994. A method for depolymerization of alginate using the enzyme system of Flavobacterium multivolum. Nippon Shokuhin Kogyo Gakkaishi 41: 505-511 https://doi.org/10.3136/nskkk1962.41.505
  17. Potin P, Sanseau AL, Gall Y, Rochas C, Kloareg B. 1991. Purification and characterization of a new kappa-carrageenase from marine Cytophaga-like bacterium. Eur J Biochem 201: 241-246 https://doi.org/10.1111/j.1432-1033.1991.tb16280.x
  18. Joo DS, Cho SY, Lee EH, Yang ST. 1999. Preparation of carrageenan oligosaccaride using carrageenase from Pseudomonas alcaligenes JCL-43 and its functional properties. Korean J Life Sci 9: 423-429
  19. Joo DS, Choi YS, Cho SY. 2003. Preparation of the depolymerized alginates by physical treatment processing with organic acids. J Korean Fish Soc 36: 1-5
  20. Joo DS, Cho SY. 2003. Preparation of carrageenan hydrolysates from carrageenan with organic acid. J Korean Soc Food Sci Nutr 32: 42-46 https://doi.org/10.3746/jkfn.2003.32.1.042
  21. Cho M, Kim BY, RHim JH. 2003. Degradation of alginate solution by using $\gamma$-irradiation and oranic acid. Korean J Food Sci Technol 35: 67-71
  22. Kim SM, Park SM, Choi HM, Lee KT. 1999. Optimal processing parameters of low molecular weight carrageenan by ultrasound. J Korean Fish Soc 32: 495-500
  23. Lee JW. 2005. Use of radiation technology for food industry and safety management. Korean Soc Food Engin 3: 20-44
  24. Kang IJ, Byun MW, Yook HS, Bae CH, Lee HS, Kwon JH, Chung CK. 1999. Production of modified starches by gamma irradiation. Radiat Phys Chem 54: 425-430 https://doi.org/10.1016/S0969-806X(98)00274-6
  25. Humphreys ER, Howells GR. 1970. Degradation of sodium alginate by $\gamma$-irradiation and by oxidative-reductive depolymerization. Carbohydr Res 16: 65-69 https://doi.org/10.1016/S0008-6215(00)86099-1
  26. Kwon JH. 2001. Import control of irradiated food. Food Ind 159: 61-87
  27. Byun MW. 1997. Application and aspect of irradiation technology in food industry. Food Sci Ind 30: 89-100
  28. Phun HC, Nho YC. 1988. The utilization of radiation in polymer industries. Polymer 12: 389-397 https://doi.org/10.1016/0032-3861(71)90019-X
  29. Cho M, Kim BY, Rhim JH. 2003. Degradation of alginate solution and powder by $\gamma$-irradiation. Food Engin Pro 7: 141-145
  30. Naotsugu N, Hiroshi M, Fumio Y, Tamikazu K. 2000. Radiation-induced degradation of sodium alginate. Polym Degradat Stab 69: 279-285 https://doi.org/10.1016/S0141-3910(00)00070-7
  31. Bao J, Ao Z, Jane JL. 2005. Characterization of physical properties of flour and starch obtained from gamma-irradiated white rice. Starch 57: 480-487 https://doi.org/10.1002/star.200500422
  32. Yi SD, Oh MJ, Yang JS. 2001. Detection capability by change of amylograph characteristics of irradiated black pepper. Korean J Food Sci Technol 33: 195-199
  33. Toru H, Setsuko T. 1996. Detection of irradiated peppers by viscosity measurement at extremely high pH. Radial Phys Chem 48: 101-104 https://doi.org/10.1016/0969-806X(95)00434-Y
  34. Lee JH, Chang YI, Chang KS. 2000. Effect of gamma irradiations on physical properties of buckwheat starch. Food Engin Pro 4: 110-119
  35. An KA, Jo DJ, Kim HK, Kim SK, Kwon JH. 2004. Effect of gamma irradiation on viscosity and physicochemical properties of starches. Korean J Food Sci Technol 36: 547-552
  36. Lee DS, Hyeung RK, Pyeun JH. 1998. Effect of low-molecularization on rheological properties of alginate. J Korean Fish Soc 31: 82-89
  37. Lee YS, Oh SH, Lee JW, Kim JH, Rhee CO, Lee HK, Byun MW. 2004. Effect of gamma irradiation on quality of cooked rice. J Korean Soc Food Sci Nutr 33: 582-586 https://doi.org/10.3746/jkfn.2004.33.3.582
  38. Lee YS, Oh SH, Lee JW, Kim JH, Kim DS, Byun MW. 2003. Effect of gamma irradiation on physicochemical and textural properties of starches. Food Sci Technol 12: 508-512
  39. Sokhey AS, Hanna MA. 1993. Properties of irradiated starches. Food Structure 12: 397-410

Cited by

  1. Chemical Composition and Rheological Properties of Enzymatic Hydrolysate of Porphyran Isolated from Pyropia yezoensis vol.48, pp.1, 2015, https://doi.org/10.5657/KFAS.2015.0058
  2. Effects of Gamma Irradiation on Antioxidant Properties and Physical Characteristics of Sargassum siliquastrum Water Extract vol.37, pp.3, 2008, https://doi.org/10.3746/jkfn.2008.37.3.357
  3. Effect of Gamma Irradiation on Immune Activity and Physicochemical Properties of Myagropsis myagroides Water Extract vol.44, pp.1, 2011, https://doi.org/10.5657/kfas.2011.44.1.050
  4. Effect of low-dosage electron beam irradiation on antioxidant activities of navel oranges during storage at a low temperature of 3°C vol.25, pp.2, 2016, https://doi.org/10.1007/s10068-016-0084-9
  5. 패 추출물의 항산화능 및 이화학적 특성에 미치는 감마선 조사의 영향 vol.37, pp.11, 2008, https://doi.org/10.3746/jkfn.2008.37.11.1485
  6. Characterization of Undaria pinnatifida Root Enzymatic Extracts Using Crude Enzyme from Shewanella oneidensis PKA 1008 and Its Anti-Inflammatory Effect vol.30, pp.1, 2007, https://doi.org/10.4014/jmb.1908.08019
  7. 미역(Undaria pinnatifida) 부위별로 추출한 다당의 이화학적 특성 vol.53, pp.5, 2020, https://doi.org/10.5657/kfas.2020.0665
  8. Quality of Soy-Based Patties Using κ-Carrageenan and Methyl-Cellulose as Binders During Cold Storage Periods vol.24, pp.4, 2020, https://doi.org/10.13050/foodengprog.2020.24.4.317