무기입자를 충전한 폴리우레탄 나노복합체의 합성 및 물성

Synthesis of Polyurethane Nanocomposite Filled Inorganic Particles and Their Properties

  • 손복기 (충남대학교 생명화학공학과) ;
  • 황택성 (충남대학교 생명화학공학과)
  • Son, Bok-Gi (Department of Chemical and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Chemical and Biological Engineering, College of Engineering, Chungnam National University)
  • 발행 : 2007.09.30

초록

본 연구는 열안정성을 향상시킨 무기나노 분말충전 나노복합재료를 우레탄 중합방법으로 제조하였다. 나노복합재료의 구조와 표면 특성은 XRD와 FT-IR을 통하여 알아보았고, 열안정성은 TGA와 DSC를 통하여 알아보았으며, SEM을 이용하여 복합재료의 모폴로지를 관찰하였다. 복합재료의 기계적 물성은 UTM을 사용하여 측정하였다. 실험 결과, MMT를 충전한 나노복합재료의 층간거리가 $7.5{\AA}$ 증가하였고, Silica 내 Si-O기에 의해 $1038cm^{-1}$에서 새로운 피크가 나타났다. 또한 열안정성과 기계적 물성도 폴리우레탄 매트릭스보다 향상된 것을 확인할 수 있었다.

The nanocomposites with inorganic nano powder, improved thermal stability, were prepared by urethane polymerization. The structure and surface properties of the nanocomposites were determined by X-ray diffraction and FT-IR, respectively. The thermal stabilities were studied using TGA and DSC. Their morphologies and mechanical properties were observed by SEM and UTM. As a result, the nanocomposites with MMT led to the increase of the silicate layers. The distance between layers of the nanacomposites with MMT was increased by $7.5{\AA}$ and the new peaks at $1038cm^{-1}$ were shown in the presence of the Si-O groups on the silica. The thermal stabilities of the nanocomposites were higher than those of pore polyurethane matrix. The nanocomposites had higher in mechanical properties than the pure polyurethane matrix.

키워드

참고문헌

  1. P. K. Saxena, K. G. Raut, S. R. Srinivasan, S. Sivaram, R. S. Rawat, and R. K. Jain, Constr. Build Meter., 5, 208 (1991) https://doi.org/10.1016/0950-0618(91)90052-M
  2. M. Y. L. Chew, X. Zhou, and Y. M. Tay, Polytn. Test., 20, 87 (2001)
  3. Y. W. Tang, J. P. Santerre, R. S. Labow, and D. G. Taylor, J. Appl. Polym. Sci, 62, 1133 (1996) https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8<1133::AID-APP1>3.0.CO;2-J
  4. C. Tonelli, T. Trombetta, M. Scicchitano, and G. Castiglioni, J. Appl: Polym. Sci, 57, 1031 (1995) https://doi.org/10.1002/app.1995.070570902
  5. J. Boxhammer, Polym. Test., 20, 719 (2001) https://doi.org/10.1016/S0142-9418(01)00029-0
  6. M. W. Noh and D. C. Lee, J. Appl. Polym. Sci., 74, 2811 (1999) https://doi.org/10.1002/1097-4628(19991213)74:12<2811::AID-APP4>3.0.CO;2-3
  7. R. Krishnamoorti and R. A. Vaia, Polymer Nsnocomposites, ACS symposium series 804, American Chemical Society, Washington, DC., p.7 (2002)
  8. M. V. Pandya, D. D. Deshpande, and D. G. Hundiwale, J. Appl. Polym. Sci, 32, 4959 (1986) https://doi.org/10.1002/app.1986.070320518
  9. P. Aranda and E. Ruiz -Hitzky, Chem. Mater., 4, 1395 (1992) https://doi.org/10.1021/cm00024a048
  10. P. Maiti, C. A. Batt, and E. P. Giannelis, Polym. Mater. Sci Eng., 88, 58 (2003)
  11. M. Alexandre and D. Dubois, Mater. Sci Eng., 28, 1 (2000) https://doi.org/10.1016/S0927-796X(00)00012-7
  12. T. K. Chen and K. H. Wei, Polymer, 41, 1345 (2000) https://doi.org/10.1016/S0032-3861(99)00280-3
  13. S. L Reegen, J. Appl. Polym. Sci, 10, 1247(1966) https://doi.org/10.1002/app.1966.070100903
  14. D. J. David and H. B. Staley, Anelyticel Chemistry of Polyurethane, Wiley-Interscience, New York, 1969
  15. G. Hernandez-Paron, R. M. Lima, R. Nava, M. V. GarciaGarduno, and V. M. Castano, Adv. Polym. Technol., 21, 116 (2002) https://doi.org/10.1002/adv.10015
  16. J. W. Gilman, C. L. Jackson, A. B. Morgan, and R. H. Harris, Jr., Chem. Mster., 12, 1866 (2002)
  17. Y. U. An, J. H. Chang, Y. H. Park, and J. M. Park, Polymer (Korea), 26, 381 (2002)
  18. S. J. Park, K. S. Cho, M. Zaborski, and L. Slusarski, Elastomer, 4, 258 (2002)