Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Kim, Gun-Wook (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Han, Sang-Hoon (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee, Young-Moo (School of Chemical Engineering, College of Engineering, Hanyang University)
  • 발행 : 2007.10.31

초록

In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

키워드

참고문헌

  1. M. Perez-Mendoza, et al., Carbon, 44, 638 (2006) https://doi.org/10.1016/j.carbon.2005.09.037
  2. D. Q. Vu, W. J. Koros, and S. J. Miller, J. Membrane Sci., 211, 311 (2003) https://doi.org/10.1016/S0376-7388(02)00429-5
  3. H. Suda and K. Haraya, Chem. Commun., 93 (1997)
  4. S. M. Saufi and A. F. Ismail, Carbon, 42, 241 (2004) https://doi.org/10.1016/j.carbon.2003.10.022
  5. C. Liang, G. Sha, and S. Guo, Carbon, 37, 1391 (1999)
  6. S. H. Park, et al., Macromol. Res., 11, 157 (2003) https://doi.org/10.1007/BF03218346
  7. H. Suda and K. Haraya, J. Phys. Chem. B, 101, 3988 (1997)
  8. A. Singh-Ghosal and W. J. Koros, J. Membrane Sci., 174, 177 (2000)
  9. T. A. Centeno and A. B. Fuertes, Sep. Purif. Technol., 25, 379 (2001) https://doi.org/10.1016/S1383-5866(01)00191-5
  10. T. A. Centeno, J. L. Vilas, and A. B. Fuertes, J. Membrane Sci., 228, 45 (2004) https://doi.org/10.1016/j.memsci.2003.09.010
  11. A. F. Ismail and L. I. B. David, J. Membrane Sci., 193, 1 (2001) https://doi.org/10.1016/S0376-7388(01)00510-5
  12. W. Zhou, et al., J. Membrane Sci., 217, 55 (2003) https://doi.org/10.1016/S0376-7388(03)00074-7
  13. Y. K. Kim, H. B. Park, and Y. M. Lee, J. Membrane Sci., 251, 159 (2005) https://doi.org/10.1016/j.memsci.2004.11.011
  14. Y. K. Kim, H. B. Park, and Y. M. Lee, J. Membrane Sci., 226, 145 (2003) https://doi.org/10.1016/j.memsci.2003.08.017
  15. D.o.B.-R.L. Sadtler Research Laboratories The Infrared Spectra Atlas of Monomers and Polymers, 1984
  16. R. K. Mariwala and H. C. Foley, Ind. Eng. Chem. Res., 33, 607 (1994)
  17. L. I. B. David and A. F. Ismail, J. Membrane Sci., 213, 285 (2003) https://doi.org/10.1016/S0376-7388(02)00513-6
  18. H. M. Jeong, M. Y. Choi, and Y. T. Ahn, Macromol. Res., 14, 312 (2006) https://doi.org/10.1007/BF03219087
  19. B. Grzyb, et al., J. Anal. Appl. Pyrol., 67, 77 (2003) https://doi.org/10.1016/S0165-2370(02)00018-9
  20. D. S. Kim, et al., Macromol. Res., 13, 314 (2005) https://doi.org/10.1007/BF03218459
  21. M. G. Sedigh, et al., Ind. Eng. Chem. Res., 38, 3367 (1999) https://doi.org/10.1021/ie980337y
  22. X. Zhang, et al., Sep. Purif. Technol., 52, 261 (2006) https://doi.org/10.1016/j.seppur.2006.05.002
  23. D. K. Kim, et al., Macromol. Res., 13, 521 (2005) https://doi.org/10.1007/BF03218490
  24. E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951)
  25. I. Mochida and S. Kawano, Ind. Eng. Chem. Res., 30, 2322 (1991)
  26. Jeffrey C. S. Wu, D. F. Flowers, and P. K. T. Liu, J. MembraneSci., 77, 85 (1993)
  27. J. Gilron and A. Soffer, J. Membrane Sci., 209, 339 (2002)
  28. J. Hayashi, et al., Ind. Eng. Chem. Res., 34, 4364 (1995)
  29. J. Hayashi, et al., Ind. Eng. Chem. Res., 35, 4176 (1996)
  30. M. Yamaoto, et al., J. Membrane Sci., 133, 195 (1997)
  31. A. Lapkin, Membr. Tech., 116, 5 (1999)
  32. W. Wei, et al., Carbon, 40, 465 (2002)
  33. W. Zhou, et al.,lnd. Eng. Chem. Res., 40, 4801 (2001) https://doi.org/10.1021/ie000632u