Inactivation Kinetics of Listeria innocua ATCC 33090 at Various Temperature Heating-up and Pressure Building-up Rates

  • Ahn, Ju-Hee (Division of Biomaterials Engineering, Kangwon National University) ;
  • Balasubramaniam, V.M. (Department of Food Science and Technology, The Ohio State University)
  • 발행 : 2007.04.30

초록

The effects of temperature heating-up rate and pressure building-up phase on the inactivation of Listeria innocua ATCC 33090 were evaluated in buffered peptone water. The number of L. innocua was reduced by 5.57 and 6.52 log CFU/mL during the nonisothermal treatment (the come-up time followed by isothermal process) and the isothermal treatment, respectively, at $60^{\circ}C$. When compared to the isothermal treatment (0.76$33.2^{\circ}C/min$ of temperature heating-rate. The effect of the combined high pressure and thermal processing on the inactivation of L. innocua increased with increasing pressure and temperature. At all temperature levels from 40 to $60^{\circ}C$ under 700 MPa, L. innocua was not detected by enrichment culture (>7 log reduction).

키워드

참고문헌

  1. AI-Holy M, Quinde Z, Guan D, Tang J, Rasco B. Thermal inactivation of Listeria monocytogenes in salmon (Oncorhynchus keta) caviar using conventional glass and novel aluminium thermaldeath-time tubes. J. Food Protect. 67: 383-386 (2004) https://doi.org/10.4315/0362-028X-67.2.383
  2. Yen LC, Sofos JN, Schmidt GR. Effect of meat curing ingredients on thermal destruction of Listeria monocytogenes in ground pork. J. Food Protect. 54: 408-412 (1991) https://doi.org/10.4315/0362-028X-54.6.408
  3. Allan B, Linseman M, MacDonald LA, Lam JS, Kropinski AM. Heat shock response of Pseudomonas aeruginosa. J. Bacteriol. 170: 3668-3674 (1988) https://doi.org/10.1128/jb.170.8.3668-3674.1988
  4. luneja VK, Novak JS, Huang L, Eblen BS. Increased thermotolerance of Clostridium perfringens spores following sublethal heat shock. Food Control 14: 163-168 (2003) https://doi.org/10.1016/S0956-7135(02)00060-9
  5. MacKey BM, Derrick CM. Changes in the heat resistance of Salmonella typhimurium during at rising temperatures. Lett. Appl. Microbiol. 4: 13-16 (1987) https://doi.org/10.1111/j.1472-765X.1987.tb01571.x
  6. Pagan R, Condon S, Sala FJ. Effect of several factors on heat-shock induced thermotolerance of Listeria monocytogenes. Appl. Environ. Microb. 63: 3225-3232 (1997)
  7. Farber JM, Brown BE. Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat. Appl. Environ. Microb. 56: 1584-1587 (1990)
  8. Torres JA, Velazquez G. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67: 95-112 (2005) https://doi.org/10.1016/j.jfoodeng.2004.05.066
  9. Hong GP, Park SH, Kim JY, Lee SK, Min S-G. Effects of timedependent high pressure treatment on physico-chemical properties of pork. Food Sci. Biotechnol. 14: 808-812 (2005)
  10. Lim S, Yagiz Y, Balaban MO. Continuous high pressure carbon dioxide processing of mandarin juice. Food Sci. Biotechnol. 15: 1318 (2006)
  11. Hartmann C, Delgado A. Numerical simulation of thermal and fluiddynamical transport effects on a high pressure induced inactivation. High Pressure Res. 23: 67-70 (2003) https://doi.org/10.1080/0895795031000109652
  12. Teixeira AA. Thermal processing calculations. pp. 563-619. In: Handbook of Food Engineering. Heldman DR, Lund LB (eds). Marcel Dekker, Inc., New York, NY, USA (1992)
  13. Xiong R, Xie G, Edmondson AS, Linton RH, Sheard MA. Comparison of the Baranyi model with the modified Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A. Food Microbiol. 16: 269-275 (1999) https://doi.org/10.1006/fmic.1998.0243
  14. Linton RH, Carter WH, Pierson MD, Hackney CR. Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. J. Food Protect. 58: 946-954 (1995) https://doi.org/10.4315/0362-028X-58.9.946
  15. Conesa R, Periago PM, Esnoz A, Lopez A, Palop A. Prediction of Bacillus subtilis spore survival after a combined non-isothermalisothermal heat treatment. Eur. Food Res. Technol. 217: 319-324 (2003) https://doi.org/10.1007/s00217-003-0749-5
  16. Cole MB, Davis KW, Munro G, Holyoak CD, Kilsby DC. A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. J. Ind. Microbiol. Biot. 12: 232-239 (1993) https://doi.org/10.1007/BF01584195
  17. Chen H, Hoover DG, Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerg. 4: 25-34 (2003) https://doi.org/10.1016/S1466-8564(02)00083-8
  18. Chen H, Hoover DG, Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. Int. J. Food Microbiol. 87: 161-171 (2003) https://doi.org/10.1016/S0168-1605(03)00064-3
  19. Cheftel JC. High-pressure, microbial inactivation, and food preservation. Food Sci. Technol. Int. 1: 75-90 (1995) https://doi.org/10.1177/108201329500100203
  20. Ardia A, Knorr D, Ferrari G, Heinz V. Kinetic studies on combined high-pressure and temperature inactivation of Alicyclobacillus acidoterrestris spores in organic juice. Appl. Biotechnol. Food Sci. Policy 1: 169-173 (2003)
  21. Ananta E, Heinz V, Schluter O, Knorr D. Kinetic studies on highpressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innov. Food Sci. Emerg. 2: 261-272 (2001) https://doi.org/10.1016/S1466-8564(01)00046-7
  22. Corradini MG, Normand MD, Peleg M. Calculating the efficacy of heat sterilization process. J. Food Eng. 67: 59-69 (2005) https://doi.org/10.1016/j.jfoodeng.2004.08.001
  23. Corradini MG, Peleg M. Estimating non-isothermal bacterial growth in foods from isothermal experimental data. J. Appl. Microbiol. 99: 187-200 (2005) https://doi.org/10.1111/j.1365-2672.2005.02570.x
  24. Hassani M, Manas P, Raso J, Condon S, Pagan R. Predicting heat inactivation of Listeria monocytogenes under nonisothermal treatments. J. Food Protect. 68: 736-743 (2005) https://doi.org/10.4315/0362-028X-68.4.736
  25. Peleg M, Normand MD, Corradini MG, Generating microbial survival curves during thermal processing in real time. J. Appl. Microbiol. 98: 406-417 (2005) https://doi.org/10.1111/j.1365-2672.2004.02487.x
  26. Palou E, Lopez-Malo A, Barbosa-Canovas GV, Welti-Chanes J, Swanson BG. Kinetic analysis of Zygosaccharomyces bailii inactivation by high hydrostatic pressure. LWT- Food Sci. Technol. 30: 703-708 (1997) https://doi.org/10.1006/fstl.1997.0261
  27. Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55: 476-511 (1991)
  28. MacKey BM, Pritchet C, Norris A, Mead GC. Heat resistance of Listeria: strain differences and effect of meat type and curing salts. Lett. Appl. Microbiol. 10: 251-255 (1990) https://doi.org/10.1111/j.1472-765X.1990.tb00119.x
  29. Jin SS, Jin YG, Yoon KS, Woo GJ, Hwang IG, Bahk GJ, Oh DH. Predictive modeling of the growth and survival of Listeria monocytogenes using a response surface model. Food Sci. Biotechnol. 15: 715-720 (2006)
  30. Bell C, Kyriakides A. Bacterial hazards. pp. 279-433. In: Foodbome Pathogens. Blackburn CW, McClure PJ (eds). Woodhead Publishing Ltd., Cambridge, UK (2002)
  31. Fleming DW, Cochi SL, McDonald KL, Bronctum J, Hayesm PS, Plikaytis BD, Holmes MB, Audurier A, Broome CV, Reingold AL. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. New. Engl. J. Med. 312: 404-407 (1985) https://doi.org/10.1056/NEJM198502143120704
  32. Shank FR, Elliot EL, Wachsmuth IK, Losikoff ME. US position on Listeria monocytogenes in foods. Food Control 7: 229-234 (1996) https://doi.org/10.1016/S0956-7135(96)00041-2
  33. Doyle MP, Glass KA, Beery JT, Garcia GA, Pollard DJ, Schultz RD. Survival of Listeria monocytogenes in milk during hightemperature, short-time pasteurization. Appl. Environ. Microb. 53: 1433-1438 (1987)
  34. MacKey BM, Bratchell N. A review. The heat resistance of Listeria monocytogenes. Lett. Appl. Microbiol. 9: 89-94 (1999)
  35. Mafias P, Pagan R, Alvarez I, Uson SC. Survival of Salmonella senftenburg 775 W to current liquid whole egg pasteurization treatments. Food Microbiol. 20: 593-600 (2003) https://doi.org/10.1016/S0740-0020(02)00088-6