Biochemical Characterization of Tannases from Paecilomyces variotii and Aspergillus niger

  • Published : 2007.04.30

Abstract

A biochemical characterization of the tannases from Paecilomyces variotii (produced at Unicamp), Aspergillus niger (purchased from Industrial Kerry Bio-Science) and A. niger cnpat 001 (purchased from Embrapa Agroindustrial Tropical-Brazil) was carried out. P variotii is a new strain obtained from the screening of 500 fungi that were tested for their production of tannase. The biochemical properties of this new tannase from P variotii were determined and compared with those of two other tannase preparations. The tannase produced from P. variotii showed optimum activity at pH 6.5. The functional temperature range of the tannases was from $20-70^{\circ}C$, with optima at $70^{\circ}C$ for P. variotii and at $60^{\circ}C$ for the commercially obtained tannase, whereas A. niger cnpat 001 showed optimum activity at $40^{\circ}C$. The effects of 1 mM preparations of cations and anions, inhibitors, surfactants, and chelators on the tannase activity from P. variotii were also studied.

Keywords

References

  1. Saxena S, Saxena RK. Statistical optimization of tannase production from Penicillium variable using fruits (chebulic myrobalan) of Terminalia chebula. Biotechnol. Appl. Bio. 39: 99-106 (2004) https://doi.org/10.1042/BA20030097
  2. Zhong X, Peng L, Zheng S, Sun Zhizhi, Ren Y, Dong M, Xu A. Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expres. Purif. 36: 165-169 (2004) https://doi.org/10.1016/j.pep.2004.04.016
  3. Batra A, Saxena RK. Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem. 40: 1553-1557 (2005) https://doi.org/10.1016/j.procbio.2004.03.003
  4. Van de Lagemaat J, Pyle DL. Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solidstate fermentation for tannase production. Process Biochem. 40: 1773-1782 (2005) https://doi.org/10.1016/j.procbio.2004.06.044
  5. Lekha PK, Lonsane BK. Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface, and submerged fermentations. Process Biochem. 29: 497-503 (1994) https://doi.org/10.1016/0032-9592(94)85019-4
  6. Choi JM, Han J, Yoon BS, Chng JH, Shin DB, Lee SK, Hwang JK, Ryang R. Antioxidant properties of tannic acid its inhibitors effects on paraquat-induced oxidative stress in mice. Food Sci. Biotechnol. 15: 728-734 (2006)
  7. Battestin V, Macedo G, Pastore P. Otimizing the fermentation broth for tannase production by a new isolated strain Paecilomyces variotii. abstract no. 118:S49. In: Abstracts: 12th European Congress in Biotechnology. J. Technol. Copenhagen, Denmark (2005)
  8. Vaquero I, Marcobal A, Munos R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Intern. J. Food Microbiol. 96: 199-204 (2004) https://doi.org/10.1016/j.ijfoodmicro.2004.04.004
  9. Belmares R, Contreras-Esquival JC, Rodriguez-Herrera R, Coronel AR, Aguilar CN. Microbial production of tannase: an enzyme with potential use in food industry. Lebensm.-Wiss. Technol. 37: 857-864 (2004) https://doi.org/10.1016/j.lwt.2004.04.002
  10. Mondal KC, Banerjee D, Jana M, Pati BR. Colorimetric assay method for determination of the tannin acyl hydrolase activity. Anal. Biochem. 295: 168-171 (2001) https://doi.org/10.1006/abio.2001.5185
  11. Barthomeuf C, Regerat F, Pouratt H. Production, purification, and characterization of tannase from Aspergillus niger LCF 8. J. Ferment. Technol. 77: 320-323 (1994)
  12. Rajkumar S, Nandy SC. Isolation, purification, and some properties of Penicilliun chrysogenum tannase. Appl. Envirom. Microb. 46: 525-527 (1983)
  13. Aoki K, Shinke H, Nishira H. Purification and some properties of yeast tannase. Agr. Biol. Chem. Tokyo 40: 79-85 (1976) https://doi.org/10.1271/bbb1961.40.79
  14. Iibuchi S, Minoda Y, Yamada S. Studies on tannin acyl hydrolase of microorganisms. Part III. Purification of the enzyme and some properties of it. Agr. Biol. Chem. Tokyo 32: 803-809 (1968) https://doi.org/10.1271/bbb1961.32.803
  15. Yamada H, Adachi O, Watanbe M, Sato N. Studies on fungal tannase. Fomation, purification, and catalytic properties of tannase of Aspergillus flavus. Agr. Biol. Chem. Tokyo 32: 1070-1078 (1968) https://doi.org/10.1271/bbb1961.32.1070
  16. Sharma S, Bhat TK, Dawra RK.. Isolation, purification, and properties of tannase from Aspergillus niger van Thieghem. World J. Microb. Biot. 15: 673-677 (1999) https://doi.org/10.1023/A:1008939816281
  17. Kar B, Banerjee R, Bhattacharyya BM. Effect of additives on the behavioural properties of tannin acyl hydrolase. Process Biochem. 38: 1285-1293 (2003) https://doi.org/10.1016/S0032-9592(02)00329-1
  18. Bradoo S, Gupta R, Saxena RK.. Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Process Biochem. 32: 135-139 (1997) https://doi.org/10.1016/S0032-9592(96)00056-8
  19. Koyama H. Purification and characterization of 5-Oxo-L-prolinase (L-pyroglutamate hydrolase) from Alcaligenes sp. F-137. Agr. Biol. Chem. Tokyo 52: 735-741 (1988) https://doi.org/10.1271/bbb1961.52.735
  20. Vongsuvanlert V, Tani Y. Characterization of D-sorbitol dehydrogenase involved in D-sorbitol production of a methonol yeast, Candida boidinii (Kloeckera sp.) no. 2201. Agr. Biol. Chem. Tokyo 52: 419-426 (1988) https://doi.org/10.1271/bbb1961.52.419
  21. Aguilar CN, Gutierrez-Sanchez G. Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Technol. Int. 7: 373-382 (2001) https://doi.org/10.1106/69M3-B30K-CF7Q-RJ5G
  22. Saxena RK., Davidson WS, Sheoran A, Giri B. Purification and characterization of an alkalibe thermostable lipase from Aspergillus carneus. Process Biochem. 39: 239-247 (2003) https://doi.org/10.1016/S0032-9592(03)00068-2
  23. Whitaker JR. Principles of enzymology for food sciences. pp. 255-282. In: Enzyme Inhibitors. Oxford University Press, New York, NY, USA (1972)
  24. Sigma DS, Mooser G. Chemical studies of enzyme active sites. Annu, Rev. Biochem. 44: 889-931 (1975) https://doi.org/10.1146/annurev.bi.44.070175.004325
  25. Sakai T, Sakamoto T. Purification and some properties of a protopectin-solubilizing enzyme that has potent activity on sugar beet protopectin. Agr. Biol. Chem. Tokyo 54: 879-809 (1990) https://doi.org/10.1271/bbb1961.54.879
  26. Lopes MFS, Leitao AL, Regalia M, Marques JJF, Carrondo MJT, Crespo MTB. Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum. Int. J. Food Microbiol. 76: 107-115 (2002) https://doi.org/10.1016/S0168-1605(02)00013-2
  27. Jinwal UK, Roy U, Chowdhury AR, Bhaduri AP, Roy PK. Purification and characterization of an alkaline lipase from a newly isolated Pseudomonas mendocina PK -12CS and chemoselective hydrolysis of fatty acid ester. Bioorg. Med. Chem. 11: 1041-1046 (2003) https://doi.org/10.1016/S0968-0896(02)00516-3
  28. Iizurni T, Nakamura K, Fukase T. Purification and characterization of a thermostable lipase from newly isolated Pseudomonas sp. KWI-56. Agr. Biol. Chem. Tokyo 54: 1253-1258 (1990) https://doi.org/10.1271/bbb1961.54.1253
  29. Kim TU, Gu BG, Jeong JY, Byun SM, Shin YC. Purification and characterization ofa maltotetraose-forming alkaline a-amylase from an alkalophilic Bacillus strain GM8901. Appl. Environ. Microb. 61: 3105-3112 (1995)
  30. Reese ET, Maguire A. Surfactants as stimulants of enzymes production by microorganisms. Appl. Environ. Microb. 17: 242-245 (1969)
  31. Njoroge RN, Li D, Park JT, Cha H, Kim MS, Kim JW. Characterization and application of a novel thermostable glucoamylase cloned from a hyperthermophilic Archaeon Sulfolobus. Food Sci. Biotechnol. 14: 860-865 (2005)