The Processing Optimization of Caviar Analogs Encapsulated by Calcium-Alginate Gel Membranes

  • 발행 : 2007.08.31

초록

We prepared caviar analogs encapsulated by calcium-alginate gel membranes as a means to replace higher priced natural caviars. Processing the caviar analogs (beluga type) was optimized by response surface methodology with central composite design. Concentrations of sodium alginate ($X_1$) and $CaCl_2\;(X_2)$ were chosen as the independent variables. In order to compare characteristics of the caviar analogs with the natural caviar, sphericity ($Y_1$), diameter ($Y_2$), membrane thickness ($Y_3$), rupture strength ($Y_4$), rupturing deformation ($Y_5$), and sensory score ($Y_6$) were used as the dependent variables. The sphericity of the caviar analogs showed a similar value to that of natural caviar (over 94%) in the range of independent variables. Generally, the $CaCl_2$ concentration ($X_2$) affected all dependent variables to a greater extent than the sodium alginate concentration ($X_l$), For the multiple response optimization of the 5 dependent variables ($Y_1,\;Y_2,\;Y_4,\;Y_5$, and $Y_6$), the desirability function was defined as the following conditions: target values ($Y_1\;=\;100%,\;Y_2\;=\;3.0\;mm,\;Y_4\;=\;1,470\;g,\;Y_5\;=\;1.1\;mm,\;and\;Y_6\;=\;10\;points$). Membrane thickness ($Y_3$) was eliminated from the dependent variables for multiple response optimization because it could not be measured with an image analyzer. The values of the independent variables as evaluated by multiple response optimization were $X_1\;=\;-0.093$ (78%) and $X_2\;=\;-0.322$ (1.07%), respectively.

키워드

참고문헌

  1. Grant GT, Morris EF, Rees DA, Smith PJC, Thom D. Biological interactions between polysaccharides and divalent cations: the eggbox model. Eur. Biochem. Soc. L. 32: 195-200 (1973) https://doi.org/10.1016/0014-5793(73)80770-7
  2. Smidsrod O, Haug A. Dependence upon gel–sol state of the ionexchange properties of alginates. Acta Chem. Scand. 26: 2063-2074 (1972) https://doi.org/10.3891/acta.chem.scand.26-2063
  3. Skjåk-Bræk G, Grasdalen H, Smidsrod O. Inhomogeneous polysaccharide ionic gels. Carbohyd. Polym. 10: 31-54 (1989) https://doi.org/10.1016/0144-8617(89)90030-1
  4. Montero P, Pérez-Mateos M. Effects of $Na^+$, $K^+$, and $Ca^{2+}$ on gels formed from fish mince containing a carrageenan or alginate. Food Hydrocolloid 16: 375-385 (2002) https://doi.org/10.1016/S0268-005X(01)00110-2
  5. Miuraa K, Kimuraa N, Suzukia H, Miyashitab Y, Nishiob Y. Thermal and viscoelastic properties of alginate/poly (vinyl alcohol) blends cross-linked with calcium tetraborate. Carbohyd. Polym. 39: 139-144 (1999) https://doi.org/10.1016/S0144-8617(98)00162-3
  6. Blandino A, Macias M, Cantero D. Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochem. 36: 601-606 (2001) https://doi.org/10.1016/S0032-9592(00)00240-5
  7. Chai Y, Mei LM, Wu GL, Lin DQ, Yao SJ. Gelation conditions and transport properties of hollow calcium alginate capsules. Biotechnol. Bioeng. 87: 228-233 (2004) https://doi.org/10.1002/bit.20144
  8. Dembczynski R, Jankowski T. Growth characteristics and acidifying activity of Lactobacillus rhamnosus in alginate/starch liquid-core capsules. Enzyme Microb. Tech. 31: 111-115 (2002) https://doi.org/10.1016/S0141-0229(02)00080-7
  9. Koyama K, Seki M. Cultivation of yeast and plant cells entrapped in the low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol. J. Biosci. Bioeng. 97: 111-118 (2004) https://doi.org/10.1016/S1389-1723(04)70177-2
  10. Patel AV, Pusch I, Mix-Wagner G, Vorlop KD. A novel encapsulation technique for the production of artificial seeds. Plant Cell Rep. 19: 868-874 (2000) https://doi.org/10.1007/s002990000223
  11. Morre ML, Maggi L, Vigo D, Galli A, Bornaghi V, Maffeo G, Conte U. Controlled release of swine semen encapsulated in calcium alginate beads. Biomaterials 21: 1493-1498 (2000) https://doi.org/10.1016/S0142-9612(00)00035-1
  12. Tanriseven A, Dooan S. Immobilization of invertase within calcium alginate gel capsules. Process Biochem. 36: 1081-1083 (2001) https://doi.org/10.1016/S0032-9592(01)00146-7
  13. Hari PR, Chandy T, Sharma CP. Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J. Microencapsul. 13: 319-329 (1996) https://doi.org/10.3109/02652049609026019
  14. Chang CP, Dobashi T. Preparation of alginate complex capsules containing eucalyptus essential oil and its controlled release. Colloids Surface B 32: 257-262 (2003) https://doi.org/10.1016/j.colsurfb.2003.07.002
  15. Gåserod O, Sannes A, Skjåk-Bræk G. Microcapsules of alginatechitosan. II. A study of capsule stability and permeability. Biomaterials 20: 773-783 (1999) https://doi.org/10.1016/S0142-9612(98)00230-0
  16. Shin HH, Kim CT, Cho YJ, Hwang JK. Analysis of extruded pectin extraction from apple pomace by response surface methodology. Food Sci. Biotechnol. 14: 23-31 (2005)
  17. Shin HH, Jin SS, Jin YG, Yoon KS, Woo GJ, Hwang IG, Bahk GJ, Oh DH. Analysis of extruded pectin extraction from apple pomace by response surface methodology. Food Sci. Biotechnol. 14: 28-31 (2005)
  18. Jin SS, Jin YG, Yoon KS, Woo GJ, Hwang IG, Bahk GJ, Oh DH. Predictive modeling of the growth and survival of Listeria monocytogenes using a response surface model. Food Sci. Biotechnol. 15: 715-720 (2006)
  19. Cho SM, Gu YS, Kim SB. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloid 19: 221-229 (2005) https://doi.org/10.1016/j.foodhyd.2004.05.005
  20. Box GEP, Wilson KB. On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. B 13: 1-45 (1951)
  21. Wadell H. The coefficient of resistance as a function of Reynolds number for solids of various shapes. J. Franklin Inst. 217: 459-490 (1934) https://doi.org/10.1016/S0016-0032(34)90508-1
  22. Blandino A, Macias M, Cantero D. Formation of calcium alginate gel capsules: Influence of sodium alginate and $CaCl_2$ concentration on gelation kinetics. J. Biosci. Bioeng. 88: 686-689 (1999) https://doi.org/10.1016/S1389-1723(00)87103-0
  23. Blandino A, Macias M, Cantero D. Glucose oxidase release from calcium alginate gel capsules. Enzyme Microb. Tech. 27: 319-324 (2000) https://doi.org/10.1016/S0141-0229(00)00204-0